
Differential Geometry—MTG 6257—Spring 2018
Problem Set 3

Due-date: Wednesday, 4/4/17

Required problems (to be handed in): 1a, 2b(i), 3b, 6abe.
In doing any of these problems, you may assume the results of all earlier problems

(optional or required).

Optional problems: All the ones that are not required.

Required reading: Problem 2e, the setup of problem 5, all parts of problem 6,
problem 7, and all the Remarks in this assignment.

1. Induced connections on dual bundles. Let ∇ be a connection on a vector
bundle E over a manifold M .

(a) Show that there is a unique connection ∇′ on the dual bundle E∗ such that

X(〈ξ, s〉) = 〈∇′Xξ, s〉+ 〈ξ,∇Xs〉 (1.1)

for all vector fields X and all sections ξ, s of E,E∗ respectively. (In (1.1), the dual-
pairings are taken pointwise, of course.)

(b) Let {sα}kα=1 be a local basis of sections of E and let {ξα} be the local basis of
sections of E∗ dual to {sα}. Let Θ,Θ′ be the connection forms of ∇,∇′ with respect
to these local bases. Since we are using upper indices for the basis sections of E∗, we
write the first index of Θ′ downstairs and the second index upstairs1:

∇′ξβ = ξα ⊗ (Θ′)α
β

Show that Θ′ is the negative transpose of Θ, in the sense that (Θ′)α
β = −Θβ

α.

(c) Show that for all p ∈ M and X, Y ∈ TpM , the endomorphism F∇
′
(X, Y ) :

E∗p → E∗p is the negative of the natural adjoint of F∇(X, Y ) : Ep → Ep.

2. Induced connections on direct sums, tensor products, and homomor-
phism bundles. Let ∇(1),∇(2) be connections on vector bundles E1, E2 over a
manifold M . Let U ⊂ M be an open set over which both E1 and E2 are trivial, let
{sα}k1α=1, {tµ}k2µ=1 be bases of sections of E1, E2 (respectively) over U , and let Θ(1),Θ(2)

be the corresponding connection forms.

(a) The direct sum connection ∇ on E1⊕E2 is defined by ∇
(
s
t

)
=

(
∇(1)s
∇(2)t

)
,

i.e. ∇X

(
s
t

)
=

(
∇(1)
X s

∇(2)
X t

)
, where s ∈ Γ(E1), t ∈ Γ(E2), and X ∈ Γ(TM). (It is

1By default, LaTeX stacks superscripts directly on top of subscripts, as in Bk
j , making it impossi-

ble to distinguish which is the first index and which is the second. One way to produce, say, Bi
j , is

$ { Bˆi} j $.
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easy to check that this does define a connection.) Find the connection form of ∇ with

respect to the basis

(
s1
0

)
, . . . ,

(
sk1
0

)
,

(
0
t1

)
, . . . ,

(
0
tk2

)
.

(b) (i) Show that there is a unique connection ∇ on E1 ⊗ E2 such that

∇X(s⊗ t) = (∇(1)
X s)⊗ t+ s⊗∇(2)

X t (1.2)

for all s ∈ Γ(E1), t ∈ Γ(E2), and X ∈ Γ(TM). Note that this cannot be deduced from
applying the universal property of tensor products to Γ(E1) ⊗ Γ(E2), since “s ⊗ t”
denotes the pointwise tensor product p 7→ s(p) ⊗ t(p). If we attempt to take (1.2)
as a definition of ∇, it is not obvious without a little computation that ∇X(s ⊗ t)
is well-defined, not just because elements of the form sp ⊗ tp don’t form a basis of
the vector space E1,p ⊗ E2,p, but because s ⊗ t = fs ⊗ (1/f)t for any nonvanishing
f ∈ C∞(M).

We call ∇ the tensor product connection determined by ∇(1) and ∇(2).

(ii) Find the connection form of ∇ with respect to the local basis of sections
{sα ⊗ tµ} of E1 ⊗ E2.

(iii) Show that the curvature F∇ satisfies

F∇(X, Y )(s⊗ t) = (F∇
(1)

(X, Y )s)⊗ t+ s⊗ (F∇
(2)

(X, Y )t) (1.3)

for all s ∈ Γ(E1), t ∈ Γ(E2), and X, Y ∈ Γ(TM). We may write (1.3) symbolically as

F∇ = F∇
(1) ⊗ idE2 + idE1 ⊗ F∇

(2)

.

(c) Combining problems 2b and 1, there is an induced connection∇ on E2⊗E∗1
∼=

can.

Hom(E1, E2). Show that this connection satisfies

(∇XA)(s) = ∇(2)
X (A(s))− A(∇(1)

X (s))

for all A ∈ Γ(Hom(E1, E2)), s ∈ Γ(E1), and X ∈ Γ(TM). Note that this can be
written as the Leibnizian-looking formula

∇(2)
X (A(s)) = (∇XA)(s) + A(∇(1)

X (s)).

(d) Show that the induced connection ∇ on End(E1)
∼=

can. E1 ⊗ E∗1 satisfies

F∇(X, Y )A = [F∇
(1)

(X, Y ), A] := F∇
(1)

(X, Y ) ◦ A− A ◦ F∇(1)

(X, Y )

for all A ∈ Γ(End(E1)) and X, Y ∈ Γ(TM).

(e) Let RM denote the product bundle M × R → M , and let ∇(0) denote the
canonical connection. (Recall from class that ∇(0)f = df .) The bundles RM⊗E1 and
E1 ⊗RM are canonically isomorphic to E1. Show that these canonical isomorphisms
carry the tensor-product connections on RM ⊗E1 and E1⊗RM , induced by ∇(0) and
∇(1), to the connection ∇(1).
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Remark 1.1 The construction of direct-sum connections and tensor-product con-
nections extends in an obvious way to direct sums and tensor products of more than
two vector bundles. In particular, a connection on a vector bundle E induces a con-
nection on any bundle of the form E1⊗ . . .⊗Ek (k ≥ 1) where for each i, the bundle
Ei is either E or E∗. It is too cumbersome to have distinct notation for each of these
induced connections (as we did in problems 1 and 2). Hence, if ∇ is a connection on
E, we generally use the same notation ∇ for the induced connection on any of these
bundles. In any term in a formula or equation, context—the type of section being
differentiated—makes clear which connection is being used.

Remark 1.2 (A convention used below) A tensor bundle over a manifold M is
any bundle of the form E1⊗ . . .⊗Ek (k ≥ 1), where for each i, the bundle Ei is either
TM or T ∗M ; if k = 1 we also allow the trivial product bundle RM = M ×R→ M .
(Because of the canonical isomorphisms mentioned in problem 2(e), we gain no new
bundles by allowing Ei = RM if k > 1, but there is no harm in allowing it.) A
connection ∇ on TM then induces a connection (also denoted ∇) on every tensor
bundle over M , provided we define which connection to use on the trivial bundle RM .
In view of problem 2(e), in the context of induced connections on tensor bundles, we
define the “induced” connection ∇ on RM to be the canonical connection on this
product bundle (no matter what connection is used on TM).

With this convention, given a connection ∇ on TM , the collection of induced
connections on tensor bundles is “Leibnizian with respect to contractions” in the
sense that (1.1) holds with a single symbol “∇”, and “Leibnizian with respect to
tensor products” in the sense that (1.2) holds with a single symbol “∇”.

Remark 1.3 We also sometimes refer to sub-bundles and direct sums of tensor
bundles as tensor bundles, but do not make that generalization in this homework
assignment.

3. Let ∇ be a connection on a vector bundle E over a manifold M . By problems 1
and 2, ∇ induces a connection on E∗ ⊗ E∗.

(a) Show that the induced connection ∇ on E∗ ⊗ E∗ preserves the sub-bundles
Sym2(E∗) and

∧2(E∗) in the following sense: if s is a section of either of these sub-
bundles, and X is a vector field on M , then ∇

X
s is a section of the same sub-bundle.

Thus, the restriction of ∇ to sections of either of these sub-bundles is a connection
on that sub-bundle.

(b) Let g be a Riemannian metric (in the vector-bundle sense) on E. Show that
the connection ∇ on E respects g if and only if ∇g = 0. Thus if ∇ respects g, then
g is covariantly constant with respect to the induced connection on E∗⊗E∗ (whence
the terminology “∇ preserves g”).
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(c) In the setting of part (b), let g ∈ Γ(Hom(E,E∗)) be the bundle homomorphism
determined by the metric g. Show that if g is covariantly constant, then so is g:

∇X(g(s)) = g(∇Xs) for all s ∈ Γ(E), X ∈ Γ(TM).

4. The covariant Hessian. Let ∇E be a connection on a vector bundle E over M ,
and let ∇M be a connection on TM . For all vector fields X, Y and all s ∈ Γ(E), let

(H̃s)(X, Y ) = ∇E
X∇E

Y s−∇E
∇M

X Y s.

(In case the last term of the formula is hard to read: in that term, “∇M
X Y is a

subscript to ∇E; at each p ∈ M we are differentiating s in the direction ∇M
X Y
∣∣
p
,

using the connection ∇E.

(a) Show that (H̃s)(X, Y ) is F -bilinear in (X, Y ). Hence, for each s, the map

(X, Y ) 7→ (H̃s)(X, Y ) is tensorial, and therefore defines a section Hs of
E ⊗ T ∗M ⊗ T ∗M .

The section Hs is called the covariant Hessian of s with respect to the connections
∇E and ∇M . If (M, g) is Riemannian, and you see the term “covariant Hessian” used
without the connections ∇E and ∇M having both been specified explicitly, the writer
is probably using the following conventions:

• ∇M is the Levi-Civita connection on (M, g).

• If E is a tensor bundle over M , then ∇E is the one induced by the Levi-Civita
connection. Note that for the product bundle RM , this means that the canonical
connection (∇f = df) is used, so the covariant Hessian of f ∈ C∞(M) is given
by Hf(X, Y ) = X(Y (f))− (∇XY )(f), where ∇ is the Levi-Civita connection.

(b) Show that if ∇M is torsion-free, then for all sections s and vector fields X, Y ,

Hs(X, Y )−Hs(Y,X) = F∇
E

(X, Y )s.

Thus, the left-hand side is tensorial in s, even though neither term individually is
tensorial in s.

(c) Following the conventions mentioned above, show that on a Riemannian man-
ifold, the covariant Hessian of any function f ∈ C∞(M) is a symmetric tensor field.
(All that is needed for this symmetry is that we use a torsion-free connection on TM ;
the metric does not enter the argument.)

5. Higher-order covariant derivatives. Let ∇ be a connection on TM . Using
the convention in Remark 1.2, we have an induced connection denoted ∇ on every
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tensor bundle over M . Since a connection on any vector bundle E maps Γ(E) to
Γ(E ⊗ T ∗M), we therefore have an infinite sequence of maps

C∞(M) = Γ(RM)
∇=d−→ Γ(T ∗M)

∇−→ Γ(T ∗M⊗T ∗M)
∇−→ Γ(T ∗M⊗T ∗M⊗T ∗M)

∇−→ . . . .
(1.4)

(For any tensor bundle E we have a similar sequence, with Γ(RM) replaced by Γ(E),
and with (T ∗M)⊗k replaced by E ⊗ (T ∗M)⊗k.) In particular, for f ∈ C∞(M), a
connection on TM allows us to define ∇∇f,∇∇∇f, etc.

(a) Show that if the connection ∇ is a torsion-free, then ∇∇f is the covariant
Hessian defined in problem 3.

If you do part (a) carefully, you will likely find that you are actually doing part
(b), and then deducing part (a) using problem 3c. I’ve stated part (a) separately
since it’s more forgiving of an easily-made mistake.

(b) More generally, show that if the connection ∇ is arbitrary, then ∇∇f is still
the covariant Hessian up to a “transpose”:

(∇∇f)(X, Y ) = Hf(Y,X). (1.5)

(This is true with f replaced by a section of any tensor bundle; I’m just giving you
the simplest case for homework. An analog is also true for sections of an arbitrary
vector bundle E, except that we need to specify two initial connections, ∇E and ∇M ,
to define what “∇” is going to mean beyond the first map in the sequence analogous
to (1.4).)

6. Curvature of submanifolds. Let (M̃, g̃) be a Riemannian manifold, let M
be a submanifold, let j : M → M̃ be the inclusion map, and let g = j∗g̃ (the

induced metric on M). Let ∇̃,∇ be the Levi-Civita connections on (M̃, g̃) and (M, g)
respectively. Recall that for every vector field X on M and any p ∈M , there is an M -
open neighborhood U of p such that X|U extends to a vector field on some M̃ -open
neighborhood of p. (Here and below, “vector field on M” means a tangent vector
field—a section of TM , not just a section of TM̃ |M .)

At each p ∈ M , let πtan, πnor denote orthogonal projection from TpM̃ to the
tangent space TpM and normal space νpM respectively.

(a) Let X, Y be vector fields on M , and let U ⊂ M be an M -open neighborhood
small enough that X|U , Y |U extend to vector fields X̃, Ỹ on some M̃ -open set. (We
will not need X̃ till part (b).) Show that at each point of U we have

∇XY = πtan(∇̃X Ỹ ),

independent of the choice of local extension Ỹ .

(b) Notation as in part (a). Show that at each p ∈ U we have

πnor

(
∇̃X Ỹ

)
= πnor

(
∇̃Y X̃

)
. (1.6)
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The left-hand side of (1.6) is clearly F(M)-linear in X and independent of the
choice of local extension X̃, so the right-hand side must have the same property;
similarly both sides are F(M)-linear in Y and independent of the choice of Ỹ . Hence
each side is F(M)-bilinear and therefore tensorial, defining at each point p ∈ M a
symmetric, νpM -valued bilinear form hp on TpM . As p varies over M we obtain a
section h ∈ Γ(νM ⊗ Sym2(T ∗M)) such that

h(X, Y ) = πnor(∇̃X Ỹ ). (1.7)

for all vector fields X, Y on M and local extensions Ỹ of Y . The object h is called
the second fundamental form of the submanifold M . (The first fundamental form is
simply the induced metric g.)

Remark 1.4 (1) Sometimes we call the object h defined in (1.7) the “vector-valued
second fundamental form” to distinguish it from the related scalar-valued object in
part (d) below. (2) The second fundamental form of a submanifold is sometimes
called the extrinsic curvature, for reasons mentioned in part (d).

(c) Show that for all vector fields X, Y, Z,W on M , at each point of M we have
the Gauss equation

g(RM(X, Y )Z,W ) = g̃(RM̃(X, Y )Z,W )

+g̃(h(X,W ), h(Y, Z))− g̃(h(X,Z), h(Y,W )), (1.8)

where RM(·, ·)· and RM̃(·, ·)· denote the Riemann tensors of (M, g) and (M̃, g̃) re-
spectively.

Remark 1.5 Observe that if the ambient manifold (M̃, g̃) is Euclidean space, then
the first term on the right-hand side of (1.8) is zero. Hence, in this case, the Riemann
tensor of the abstract Riemannian manifold (M, g)—an intrinsic curvature defined
purely from the metric g, without ever embedding M into a larger manifold—is
completely determined by the extrinsic curvature h.

(d) Suppose now that the codimension of M is 1. Then, locally, there are exactly
two unit normal vector fields, say ±N . Then for all p ∈M and X, Y ∈ TpM we have

h(X, Y ) = g̃(h(X, Y ), N)N =: ĥ(X, Y )N.

We call ĥ(X, Y ) the (locally defined, scalar-valued) second fundamental form de-
termined by N . (There are two such locally-defined forms, each the negative of the
other.) Show that

ĥ(X, Y ) = −g̃(∇̃XN, Y ). (1.9)

Thus, the second fundamental form ĥ measures the “bending” of the unit normal
N as we move along M , as viewed from within the ambient manifold M̃ . This
bending is extrinsic to (M, g): to a creature whose universe is the abstract Riemannian
manifold (M, g), there is no larger ambient space, no unit normal, and no second
fundamental form.
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Remark 1.6 One of Gauss’s brilliant discoveries was that there is such a thing as
intrinsic curvature. Abstract manifolds had yet to be discovered, and the curvature
of a surface in R3 was thought of only as the second fundamental form (or the
related “shape operators” mentioned in Remark 1.9). In his Theorema Egregium,
Gauss proved that what is now called Gaussian curvature is an isometric invariant:
if F : (M, g)→ (M ′, g′) is what we now call an isometry (of surfaces), then F carries
the Gaussian curvature of (M, g) to the Gaussian curvature of (M ′, g′). It is possible
for surfaces M and M ′ in R3 to be isometric without having the same extrinsic
geometry, i.e. without one being the image of the other under a rigid motion of R3.
The invariance of Gaussian curvature under isometries means that it is something
intrinsic to a Riemannian 2-manifold (M, g), definable without any embedding in
R3.

Remark 1.7 The number ĥ(X, Y )|p depends on which of the two unit normals we
call Np, but the vector h(X, Y )|p does not. If M is connected and the normal bundle
is orientable, then there are exactly two globally-defined unit normal vector fields
N , hence two globally defined scalar-valued second fundamental forms (differing by
a sign).

The modifier “scalar-valued” is often omitted to shorten wording when context
makes the meaning clear. It is always omitted in elementary courses on surfaces in
R3.

Remark 1.8 If (M̃, g̃) is Euclidean space Rn, then ĥ ≡ 0 on a connected open
set U ⊂ M if and only if N is represented by a constant Rn-valued function on U ;
equivalently, if and only if U is contained in a hyperplane. Geometrically, it is natural
to interpret the non-constancy of N as some sort of curving of the submanifold M ;
hence the term “extrinsic curvature”.

Remark 1.9 Observe that in the codimension-1 case, the Gauss equation (1.8) sim-
plifies to

g(RM(X, Y )Z,W ) = g̃(RM̃(X, Y )Z,W ) + ĥ(X,W ) ĥ(Y, Z)− ĥ(X,Z) ĥ(Y,W ),
(1.10)

regardless of which unit normal is used to define ĥ. If (M̃, g̃) is Euclidean space, then
the ambient curvature is zero, and (1.10) simplifies even more:

g(RM(X, Y )Z,W ) = ĥ(X,W ) ĥ(Y, Z)− ĥ(X,Z) ĥ(Y,W ). (1.11)

Finally, if M is a surface in Euclidean 3-space, then (1.11) gives us a simple formula
for Gaussian curvature: for p ∈M and any orthnormal basis {e1, e2} of TpM,

K(p) = g(RM(e1, e2)e2, e1) =

∣∣∣∣ ĥ(e1, e1) ĥ(e1, e2)

ĥ(e2, e1) ĥ(e2, e2)

∣∣∣∣ = det(Sp), (1.12)
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where the shape operator Sp : TpM → TpM (determined by the choice of N) is the self-

adjoint linear map defined by the equation ĥ(X, Y ) = g(Sp(X), Y ). By considering
the eigenvalues of this shape operator, one can show that M is “bowl-shaped” at p if
K(p) > 0 and “saddle-shaped” at p if K(p) < 0. (The case K(p) = 0 is indeterminate,
analogously to the Calculus-3 second-derivative test for local extrema of a real-valued
function of two variables.)

(e) Consider the example M = Sn ⊂ Rn+1 = M̃ , where Rn+1 is given its standard
Riemannian metric. Let N be the outward-pointing unit normal vector field on M .
Show that for every vector field X on M we have ∇̃XN = X, and deduce from this
the following facts (simply writing R instead of RM)

(i) g(R(X, Y )Z,W ) = g(X,W )g(Y, Z) − g(X,Z)g(Y,W ) for all p ∈ Sn and all
X, Y, Z,W ∈ TpSn.

(ii) R(X, Y )Z = g(Y, Z)X − g(X,Z)Y for all p ∈ Sn and all X, Y, Z ∈ TpSn.

(iii) The sectional-curvature function σ : G2(TS
n)→ R is the constant function 1.

7. Hyperbolic space. Let M be the open ball of radius 1 in Rn, centered at the
origin. Let r : Rn → R denote Euclidean distance to the origin. Let gEuc be the
standard Riemannian metric on Rn, restricted to the open set M . Then define a
metric g on M by

g =
4

(1− r2)2
gEuc . (1.13)

Show that M has constant curvature −1 (see Remark below). This Riemannian
manifold is called the Poincaré disk or (the Poincaré model of) hyperbolic n-space.

Remark 1.10 A Riemannian manifold (M, g) is said to have constant curvature,
or constant sectional curvature, if the sectional-curvature function G2(TM) → R is
constant. These are very exceptional manifolds. For every dimension n ≥ 2, and for
every real number K, up to isometry there is exactly one simply connected, complete
Riemannian manifold of constant curvatureK. (We have not defined what “complete”
means for a Riemannian manifold. That’s coming after we define the metric-space
structure.) For K > 0 this constant-curvature manifold is the sphere of radius 1/

√
K

in Euclidean space; for K = 0 it is Euclidean space; and for K < 0 it is a slightly
modified version of the Poincaré disk (just multiply the metric in (1.13) by 1/

√
|K|).

If you redo your computations for problem 7 with “1− r2” in (1.13) replaced by
“1 + r2” (and remove what then becomes the unnecessary restriction r < 1), you’ll
find that the resulting metric has constant curvature 1. This metric on Rn is exactly
the pullback of the standard metric on Sn by stereographic projection.
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