Differential Geometry-MTG 6257-Spring 2018
 Problem Set 4
 Due-date: Wednesday, 4/25/18

Required problems (to be handed in): $2 \mathrm{bc}, 3,5 \mathrm{c}, 5 \mathrm{~d}(\mathrm{i})$.
In doing any of these problems, you may assume the results of all earlier problems (optional or required).

Required reading: Remark 1.1; problem 2de; Remarks 1.3 and 1.4; problem 5ab; Remark 1.5; the result of problem 6d; Remarks 1.6 and 1.7; problem 7a; problem 8.

Optional problems: All the ones that are not required.

1. Lemma for use in later problem(s). Let $\left\{y^{i}\right\}$ be standard coordinates on \mathbf{R}^{n}, let $\omega \in \Omega^{n-1}\left(S^{n-1}\right)$ be the standard volume form, and let $\operatorname{Vol}\left(S^{n-1}\right)=\int_{S^{n-1}} \omega$ (the volume of the standard, Euclidean, unit sphere). Show that for all $i, j \in\{1, \ldots, n\}$,

$$
\int_{S^{n-1}} y^{i} y^{j} \omega=\frac{1}{n} \delta_{i j} \operatorname{Vol}\left(S^{n-1}\right)
$$

(This can be done without any trigonometric integrals.)
2. Ricci tensor and scalar curvature. Let (M, g) be a Riemannian manifold. For each $p \in M$ and $X, Y \in T_{p} M$, the Riemann tensor defines a linear map $T_{p} M \rightarrow T_{p} M$ by $Z \mapsto R(X, Z) Y$. Define

$$
\operatorname{Ric}(X, Y)=\left.\operatorname{Ric}\right|_{p}(X, Y)=\operatorname{tr}(Z \mapsto R(Z, X) Y),
$$

where "tr" denotes the trace. (This trace-operation is also called contraction of the first and third factors of the tensor bundle $T M \otimes T^{*} M \otimes T^{*} M \otimes T^{*} M$.) Thus, if $\left\{e_{i}\right\}$ is an arbitrary basis of $T_{p} M$ and $\left\{\theta^{i}\right\}$ is the dual basis of $T_{p}^{*} M$,

$$
\operatorname{Ric}(X, Y)=\left\langle\theta^{i}, R\left(e_{i}, X\right) Y\right\rangle .
$$

Clearly the map $\left.(X, Y) \mapsto \operatorname{Ric}\right|_{p}(X, Y)$ is bilinear, so Ric $\left.\right|_{p}$ is an element of $T_{p}^{*} M \otimes$ $T_{p}^{*} M$. This tensor is called the Ricci tensor at p. Letting p vary, it is easily seen that Ric $\left.\right|_{p}$ depends smoothly on p, so Ric becomes a tensor field on M, called the Ricci tensor (field) or the Ricci curvature.
(a) Show that with $p,\left\{e_{i}\right\},\left\{\theta^{i}\right\}$ as above, the Ricci tensor at p is given by

$$
\begin{aligned}
\text { Ric }= & R_{j l} \theta^{j} \otimes \theta^{l}, \\
& \text { where } R_{j l}=R_{j i l}^{i}
\end{aligned}
$$

and where $\left\{R^{i}{ }_{j k l}\right\}$ are the components of the Riemann tensor at p with respect to the given bases.
(b) Show that the Ricci tensor is a symmetric tensor field: for all $p \in M$ and all $X, Y \in T_{p} M$, we have $\operatorname{Ric}(X, Y)=\operatorname{Ric}(Y, X)$.

Suggestion: Compute the trace defining $\operatorname{Ric}(X, Y)$ using an orthonormal basis of $T_{p} M$. Contraction with θ^{i} then becomes inner product with e_{i}.
(c) Below, for any normed vector space V, we write $S(V)$ for the unit sphere centered at the origin.

Assume that $n=\operatorname{dim}(M) \geq 2$. Recall that, at each p, the sectional curvature of M at p is a map $G_{2}\left(T_{p} M\right) \rightarrow \mathbf{R}, \mathcal{P} \mapsto \sigma(\mathcal{P})$. For $X \in S\left(T_{p} M\right)$ let $X^{\perp}=\{Y \in$ $\left.T_{p} M: Y \perp X\right\}$. Let $G_{2}^{X}\left(T_{p} M\right) \subset G_{2}\left(T_{p} M\right)$ denote the set of all 2-planes in $T_{p} M$ that contain X. There is a two-to-one map

$$
\begin{aligned}
\pi_{X}: S\left(X^{\perp}\right) & \rightarrow G_{2}^{X}\left(T_{p} M\right) \\
\pi_{X}(Y) & =\mathcal{P}(X, Y):=\operatorname{span}\{X, Y\} .
\end{aligned}
$$

The vector space X^{\perp} is a Riemannian manifold with the standard Riemannian metric determined by $\left.g_{p}\right|_{X^{\perp}}$; thus $S\left(X^{\perp}\right)$ inherits a Riemannian metric. Orienting X^{\perp} arbitrarily, and giving S^{n-1} the induced orientation, we then obtain a volume form form ω_{n-2} on $S\left(X^{\perp}\right)$. (The subscript here is just a reminder of the dimension of $S\left(X^{\perp}\right)$.) Show that for $X \in S\left(T_{p} M\right)$,

$$
\begin{equation*}
\int_{S\left(X^{\perp}\right)}\left(\sigma \circ \pi_{X}\right) \omega_{n-2}=\int_{S\left(X^{\perp}\right)} \sigma(\mathcal{P}(X, \cdot)) \omega_{n-2}=\frac{\operatorname{Vol}\left(S^{n-2}\right)}{n-1} \operatorname{Ric}(X, X) . \tag{1.1}
\end{equation*}
$$

Remark 1.1 Hence

$$
\begin{equation*}
\frac{1}{n-1} \operatorname{Ric}(X, X)=\frac{1}{\operatorname{Vol}\left(S\left(X^{\perp}\right)\right)} \int_{S\left(X^{\perp}\right)}\left(\sigma \circ \pi_{X}\right) \omega_{n-2} . \tag{1.2}
\end{equation*}
$$

Thus, up to the normalization constant $\frac{1}{n-1}$, the quantity $\operatorname{Ric}(X, X)$ represents the average sectional curvature among all two-planes in $T_{p} M$ that contain $X .{ }^{1}$

[^0]Remark 1.2 Recall that for any finite-dimensional vector space V, any symmetric bilinear form $h: V \times V \rightarrow \mathbf{R}$ is determined by its restriction to the diagonal: if we know $h(X, X)$ for all $X \in V$, then we know $h(X, Y)$ for all $X, Y \in V$. This follows from the polarization identity

$$
h(X, Y)=\frac{h(X+Y, X+Y)-h(X-Y, X-Y)}{4} .
$$

Furthermore, if V is equipped with a norm $\|\|$, then for all nonzero $X \in V$ we have $h(X, X)=\|X\|^{2} h(\hat{X}, \hat{X})$, where $\hat{X}=X /\|X\|$. Thus, in the presence of a norm, a symmetric bilinear form h can be completely recovered from the function f_{h} (notation just for this problem) that h determines on the unit sphere:

$$
\begin{aligned}
f_{h}: S(V):=\{X \in V:\|X\|=1\} & \rightarrow \mathbf{R}, \\
X & \mapsto f_{h}(X):=h(X, X) .
\end{aligned}
$$

In particular, for each $p \in M$, the function $f_{\text {Ric }}: S\left(T_{p} M\right) \subset T_{p} M$ carries all the information of the Ricci tensor at p.
(d) Let $\mathrm{g}_{p}: T_{p} M \rightarrow T_{p}^{*} M$ be the isomorphism induced by the inner product g_{p}. For any tensor $h_{p} \in T_{p}^{*} M \otimes T_{p}^{*} M$, we define the trace of h_{p} with respect to g_{p}, denoted $\operatorname{tr}_{g_{p}}\left(h_{p}\right)$, to be the image of h_{p} under the following composition maps

$$
T_{p}^{*} M \otimes T_{p}^{*} M \xrightarrow{\mathrm{~g}_{\mathrm{p}}^{-1} \otimes \mathrm{id.}} \underset{\text { canon. }}{\cong} \operatorname{Hom}\left(T_{p} M, T_{p} M\right) \xrightarrow{\text { trace }} \mathbf{R} .
$$

Applying this pointwise to any $h \in \Gamma\left(\operatorname{Sym}^{2}\left(T^{*} M\right)\right)$ gives a real-valued function $\operatorname{tr}_{g}(h): M \rightarrow \mathbf{R}$.

Show that for h as above, $p \in M,\left\{e_{i}\right\}$ any basis of $T_{p} M, g .$. the matrix of g_{p} with respect to this basis, and $g^{\bullet \bullet}=(g . .)^{-1}$,

$$
\left.\operatorname{tr}_{g}(h)\right|_{p}=g^{i j} h_{i j}=h^{i}{ }_{i}=h_{i}{ }^{i},
$$

where $h_{i j}=h\left(e_{i}, e_{j}\right)$.
(e) The scalar curvature or Ricci scalar is the real-valued function $\mathrm{R}=\operatorname{tr}_{g}(\mathrm{Ric})$ on M. Show that at each $p \in M$,

$$
\mathrm{R}(p)=\frac{n}{\operatorname{Vol}\left(S^{n-1}\right)} \int_{S\left(T_{p} M\right)} f_{\mathrm{Ric}} \omega_{n-1}
$$

where $f_{\text {Ric }}$ is as in Remark 1.2 and ω_{n-1} is the volume form on the sphere $S\left(T_{p} M\right)$ induced by the metric g_{p} and an arbitrary choice of orientation of $T_{p} M$.

Remark 1.3 Thus the "normalized scalar curvature" $\frac{1}{n} \mathrm{R}(p)$ is simply the average value of the function $S\left(T_{p} M\right) \rightarrow \mathbf{R}, X \mapsto \operatorname{Ric}(X, X)$. But for each $X \in S\left(T_{p} M\right)$, the quantity $\frac{1}{n-1} f_{\text {Ric }}(X)$ is itself an average of sectional curvatures, so scalar curvature is sometimes thought of as a (normalized) "double average" of sectional curvatures. However, the word "double" can be eliminated: it can be shown that $\frac{1}{n(n-1)} \mathrm{R}(p)$ is the average value of the sectional-curvature function $\sigma_{p}: G_{2}\left(T_{p} M\right) \rightarrow \mathbf{R}$.

Remark 1.4 For $r>0$ and $p \in M$, let $S_{r}^{n-1}(p), \bar{B}_{r}^{n}(p)$ denote, respectively, the sphere $\left\{q \in M \mid d_{g}(q, p)=r\right\}$ and the ball $\left\{q \in M \mid d_{g}(q, p) \leq r\right\}$, i.e. the sphere and closed ball of radius r and center p in the metric space (M, d_{g}). Curvature affects the growth-rate of the volumes of these spheres and balls with respect to the radius. A remarkable fact is that, if we compare the volumes of these spheres and balls to their Euclidean counterparts, then as $r \rightarrow 0$ (with p fixed), the leading-order corrections to the volumes as a function of r are governed entirely by the scalar curvature $\mathrm{R}(p)$. Specifically, letting S_{r}^{n-1} and \bar{B}_{r}^{n} (with no " p ") denote the Euclidean sphere and closed ball, as $r \rightarrow 0$ we have

$$
\begin{equation*}
\operatorname{Vol}\left(S_{r}^{n-1}(p)\right)=\operatorname{Vol}\left(S_{r}^{n-1}\right)\left(1-\frac{1}{6 n} \mathrm{R}(p) r^{2}+O\left(r^{3}\right)\right) \tag{1.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{Vol}\left(\bar{B}_{r}^{n}(p)\right)=\operatorname{Vol}\left(\bar{B}_{r}^{n}\right)\left(1-\frac{1}{6(n+2)} \mathrm{R}(p) r^{2}+O\left(r^{3}\right)\right) \tag{1.4}
\end{equation*}
$$

(Needless to say, the Euclidean volume-dependencies on r are $\operatorname{Vol}\left(S_{r}^{n-1}\right)=\operatorname{Vol}\left(S_{1}^{n-1}\right) r^{n-1}$ and $\operatorname{Vol}\left(\bar{B}_{r}^{n}\right)=\operatorname{Vol}\left(\bar{B}_{1}^{n}\right) r^{n}$.) Equations (1.3) and (1.4) quantify, asymptotically as $r \rightarrow 0$, the statement that "larger (sectional) curvature means smaller balls and spheres."
3. Pullback of a metric-preserving connection. Let M, N be manifolds, (E, h) be a Riemannian vector bundle over M, and let $f: N \rightarrow M$ be smooth. Suppose that ∇ is a connection on E that preserves the metric h. (Here "metric" is used in the sense of vector bundles: h is a smooth field of inner products on the fibers of E, not the fibers of $T M$ [unless $E=T M]$). Show that the pulled-back connection $f^{*} \nabla$ preserves the pulled-back metric $f^{\sharp} h$.

Remember that the definition of $f^{\sharp} h$ does not involve any derivatives of $f ;\left(f^{\sharp} h\right)_{p}$ is simply the inner product on $E_{f(p)} \xlongequal[\text { canon. }]{\cong}\left(f^{*} E\right)_{p}$.
4. The "wedge-bracket" operation. (a) Let V be a finite-dimensional vector space and let \mathcal{A} be an algebra. (Our only applications will be the associative algebras
$\mathcal{A}=M_{k \times k}(\mathbf{R})$ and $\mathcal{A}=\operatorname{End}(W)$ for some finite-dimensional vector space W; you may assume \mathcal{A} is one of these if it helps you understand this problem.) For $B, C \in \mathcal{A}$, we write $[B, C]=B C-C B$.

Show that for all $j, l \geq 0$, there is a unique bilinear map

$$
[\cdot, \cdot]:\left(\mathcal{A} \otimes \bigwedge^{j} V^{*}\right) \times\left(\mathcal{A} \otimes \bigwedge^{l} V^{*}\right) \rightarrow \mathcal{A} \otimes \bigwedge^{j+l} V^{*}
$$

(the "wedge-bracket" operation) such that

$$
\begin{equation*}
[B \otimes \omega, C \otimes \eta]=B C \otimes(\omega \wedge \eta)-(-1)^{j l} C B \otimes(\eta \wedge \omega)=[B, C] \otimes(\omega \wedge \eta) \tag{1.5}
\end{equation*}
$$

for all $B, C \in \mathcal{A}, \omega \in \Lambda^{p} V^{*}, \eta \in \bigwedge^{l} V^{*}$.
(b) Show that for $\xi \in \mathcal{A} \otimes \bigwedge^{j} V^{*}$ and $\zeta \in \mathcal{A} \otimes \bigwedge^{l} V^{*}$ we have

$$
\begin{equation*}
[\xi, \zeta]=(-1)^{j l+1}[\zeta, \xi] . \tag{1.6}
\end{equation*}
$$

(Thus the wedge-bracket operation is antisymmetric if either j or l is even, and symmetric if both j and l are odd.)
(c) Let E be a vector bundle over a manifold M and let $k \geq 1$. For $p \in M$, let \mathcal{A}_{p} be either of the algebras $\operatorname{End}\left(E_{p}\right), M_{k \times k}(\mathbf{R})$. Show that the wedge-bracket operation, applied pointwise, yields bilinear maps

$$
[\cdot, \cdot]: \Omega^{j}(M ; \operatorname{End}(E)) \times \Omega^{l}(M ; \operatorname{End}(E)) \rightarrow \Omega^{j+l}(\operatorname{End}(E))
$$

and

$$
[\cdot, \cdot]: \Omega^{j}\left(M ; M_{k \times k}(\mathbf{R})\right) \times \Omega^{l}\left(M ; M_{k \times k}(\mathbf{R})\right) \rightarrow \Omega^{j+l}\left(M_{k \times k}(\mathbf{R})\right),
$$

satisfying (1.5) and (1.6) pointwise.
5. Covariant exterior derivative. Let E be a vector bundle over a manifold M. As in class, we will use the abbreviated notation " $\Omega^{j}(E)$ " for $\Omega^{j}(M ; E)=\Gamma\left(E \otimes \wedge^{j} T^{*} M\right)$.
(a) Let $j, l \geq 0$.
(i) Show that there is a unique bilinear map $\wedge: \Omega^{j}(E) \times \Omega^{l}(M) \rightarrow \Omega^{j+l}(E)$, $(\alpha, \omega) \mapsto \alpha \wedge \omega$, satisfying

$$
\begin{equation*}
(s \otimes \eta)_{p} \wedge \omega_{p}=s_{p} \otimes(\eta \wedge \omega)_{p} \text { for all } p \in M \tag{1.7}
\end{equation*}
$$

(ii) Show that there is a unique bilinear map $\Omega^{j}(\operatorname{End}(E)) \times \Omega^{l}(E) \rightarrow \Omega^{j+l}(E)$ satisfying

$$
\begin{equation*}
\left((A \otimes \eta)_{p},(s \otimes \omega)_{p}\right) \mapsto A_{p}\left(s_{p}\right) \otimes\left(\eta_{p} \wedge \omega_{p}\right) \text { for all } p \in M \tag{1.8}
\end{equation*}
$$

(In this equation, the endomorphism A_{p} is applied to the vector $s_{p} \in E_{p}$, while the $\wedge^{*} T_{p}^{*} M$-factors are wedged together.) Henceforth we omit the subscript p equations like (1.7) and (1.8), understanding that an equation like " $(s \otimes \eta) \wedge \omega=$ $s \otimes(\eta \wedge \omega)$ " is to be interpreted as a pointwise statement.

For $F \in \Omega^{j}(\operatorname{End}(E))$ and $\xi \in \Omega^{l}(E)$, we will write $F(\xi)$ for the image of (F, ξ) under the map defined pointwise by (1.8). Regrettably, the notation is not selfexplanatory, but (unlike for the wedge-bracket operation in problem 4) I know of no wonderful notation for this combined endomorphism-evaluation/wedgeproduct operation.

For the rest of this problem, let ∇ be a connection on E.
(b) Show that there is a unique linear map $d_{\nabla}: \Omega^{*}(E) \rightarrow \Omega^{*}(E)$ that satisfies

$$
\begin{equation*}
d_{\nabla}(s \otimes \omega)=(\nabla s) \wedge \omega+s \otimes d \omega \tag{1.9}
\end{equation*}
$$

for all $s \in \Gamma(E), \omega \in \Omega^{j}(M), j \geq 0$. We call d_{∇} the covariant exterior derivative operator determined by ∇.
(c) Show that, for $j \geq 0$, the operator $d_{\nabla}: \Omega^{j}(E) \rightarrow \Omega^{j+1}(E)$ is not \mathcal{F}-linear, but that $d_{\nabla} \circ d_{\nabla}: \Omega^{j}(E) \rightarrow \Omega^{j+2}(E)$ is \mathcal{F}-linear.
(d) Let $F^{\nabla} \in \Omega^{2}(\operatorname{End}(E))$ be the curvature 2-form of ∇.
(i) Show that for every $s \in \Gamma(E), d_{\nabla} d_{\nabla} s=F^{\nabla}(s)$, where the notation is as in (a)(ii) above (with $j=0$).
(ii) Show, more generally, that for any $j \geq 0$ and $\xi \in \Omega^{j}(E), d_{\nabla} d_{\nabla} \xi=F^{\nabla}(\xi)$.

Remark 1.5 Hence for a flat connection, the pair $\left(\Omega^{*}(E), d_{\nabla}\right)$ is a cochain complex, and cohomology is defined. Remember, however, that not every vector bundle admits a flat connection. For those that do, the cohomology groups (in a given degree) defined by different flat connections may not be isomorphic.
6. Bianchi identity. Let ∇ be a connection on a vector bundle E over a manifold M. As seen in the previous assignment, ∇ canonically induces a connection on $\operatorname{End}(E)$, which we will again denote ∇. Below, "matrix" always means $k \times k$ matrix, where $k=\operatorname{rank}(E)$, and $[\cdot, \cdot]$ denotes the wedge-bracket operation on $M_{k \times k}$-valued differential forms (see problem 4).
(a) Let $\left\{s_{\alpha}\right\}$ be a local basis of sections of E, say on the open set $U \subset M$, and let Θ be the corresponding connection form for the connection on E. For $A \in \Gamma\left(\left.\operatorname{End}(E)\right|_{U}\right)$ let \hat{A} be the matrix-valued function for which $\hat{A}(p)$ is the matrix of the endomorphism
A_{p} of E_{p} with respect to the basis $\left\{s_{\alpha}(p)\right\}$. Show that the corresponding matrix representation of $d_{\nabla} A$ is

$$
\begin{equation*}
\left(d_{\nabla} A\right)^{\wedge}=d \hat{A}+[\Theta, \hat{A}] . \tag{1.10}
\end{equation*}
$$

(b) Let $\left\{s_{\alpha}\right\}, U, \Theta$ be as in (a), but now let $A \in \Omega^{j}\left(U ;\left.\operatorname{End}(E)\right|_{U}\right)$ for arbitrary j, and let $\hat{A} \in \Omega^{1}\left(U ; M_{k \times k}(\mathbf{R})\right)$ be the corresponding matrix-valued j-form. Show that (1.10) still holds.
(c) Let $\left\{s_{\alpha}\right\}, U, \Theta$ be as in (i). Recall that the corresponding representation of the curvature $\left.F^{\nabla}\right|_{U}$ as a matrix valued 2-form is $\hat{F}=d \Theta+\Theta \wedge \Theta$. Show that

$$
d \hat{F}=-[\Theta, \hat{F}]
$$

(d) Use parts (b) and (c) to deduce the Bianchi identity

$$
\begin{equation*}
d_{\nabla} F^{\nabla}=0 \in \Omega^{3}(M ; \operatorname{End}(E))=\Gamma\left(\operatorname{End}(E) \otimes \wedge^{3} T^{*} M\right) \tag{1.11}
\end{equation*}
$$

Remark 1.6 In the bundle

$$
\operatorname{End}(E) \otimes \bigwedge^{3} T^{*} M=E \otimes E^{*} \otimes \bigwedge^{3} T^{*} M \subset E \otimes E^{*} \otimes T^{*} M \otimes T^{*} M \otimes T^{*} M
$$

there is (for general E) no relation between the first two factors of the tensor product and the last three factors. However, if $E=T M$, then

$$
\operatorname{End}(E) \otimes \wedge^{3} T^{*} M \subset T M \otimes T^{*} M \otimes T^{*} M \otimes T^{*} M \otimes T^{*} M
$$

a tensor bundle in which all the factors are related to each other. Given a section of this bundle, we can, for example, contract the first and third factors (as we did to get Ric from the Riemann tensor), obtaining a section of $T^{*} M \otimes T^{*} M \otimes T^{*} M$. We can then "raise an index" to obtain a section of $T M \otimes T^{*} M \otimes T^{*} M$, then contract the first two factors (as we did to get R from Ric), obtaining a section of $T^{*} M$. The equation we get by applying this process to both sides of $d_{\nabla} F^{\nabla}=0$, when F^{∇} is the Riemann tensor, is an important identity called the (doubly) contracted Bianchi identity.
(e) Show that following is equivalent to the Bianchi identity: for all vector fields X, Y, Z on M,

$$
\left(\nabla_{X} F^{\nabla}\right)(Y, Z)+\left(\nabla_{Y} F^{\nabla}\right)(Z, X)+\left(\nabla_{Z} F^{\nabla}\right)(X, Y)=0 .
$$

Remark 1.7 For a Riemannian manifold (M, g) and a point $p \in M$, some simple algebra shows that the sectional-curvature function $\sigma_{p}=\left.\sigma\right|_{G_{2}\left(T_{p} M\right)}$ is constant if and only if there is a constant c_{p} such that for all $X, Y, Z \in T_{p} M$,

$$
R(X, Y) Z=c_{p}\{g(Y, Z) X-g(X, Z) Y\}
$$

(The number c_{p} is then exactly the constant value of σ_{p}.) Thus, the function σ_{p} is constant for every point p if and only if for some function $f: M \rightarrow \mathbf{R}$, we have

$$
R(X, Y) Z=f\{g(Y, Z) X-g(X, Z) Y\}
$$

for all vector fields X, Y, Z. Let us say in this case that M has fiberwise constant sectional curvature.

If $\operatorname{dim}(M)=2$, then (M, g) automatically has fiberwise-constant sectional curvature, since for every $p \in M$ the fiber $G_{2}\left(T_{p} M\right)$ is a single point. But it would appear that if $\operatorname{dim}(M)>2$, fiberwise-constant sectional curvature is a weaker condition than constant sectional curvature (the latter meaning that the whole function $\sigma: G_{2}(T M) \rightarrow \mathbf{R}$ is constant.) However, the contracted Bianchi identity can be used to show that if M is connected and $\operatorname{dim}(M)>2$, then fiberwise-constant sectional curvature implies constant sectional curvature. (Said another way: if the sectionalcurvature function is constant on each fiber of the bundle $G_{2}(T M)$, then it does not even vary from fiber to fiber.)

This is actually a corollary of an even more surprising (and more general) fact. A Riemannian manifold (M, g) is called an Einstein manifold if the Ricci tensor is proportional to the metric at each point: $\mathrm{Ric}=f g$ for some $f: M \rightarrow \mathbf{R}$. If (M, g) has fiberwise-constant sectional curvature then (M, g) is Einstein, but the converse is false; thus "Einstein" is a more general condition. The contracted Bianchi identity implies that if M is connected and $\operatorname{dim}(M)>2$, and (M, g) is Einstein, then the function f in "Ric $=f g$ " is constant.
7. Torsion and the covariant exterior derivative. Let M be a manifold. The identity map $I: T M \rightarrow T M$ may be viewed as a $T M$-valued 1-form on M. (Note that for a general vector bundle, there is no analog of this special 1-form.)

Let ∇ be a connection on $T M$.
(a) Show that

$$
\begin{equation*}
d_{\nabla} I=\tau^{\nabla}, \tag{1.12}
\end{equation*}
$$

where the torsion tensor-field τ^{∇} is viewed as a $T M$-valued 2 -form (just as is $d_{\nabla} I$). I.e. the torsion of a connection on TM is the covariant exterior derivative of the "identity 1 -form" $I \in \Omega^{1}(M ; T M)$.

Remark 1.8 Above, we treated I as an element of $\Omega^{1}(M ; T M)$; the object $d_{\nabla} I$ was then an element of $\Omega^{2}(M ; T M)$. But we may also view I as tensor field on M, a
section of the bundle $\operatorname{End}(T M)=\operatorname{End}\left(T M \otimes T^{*} M\right)$. (In terms of bundle-valued differential forms, I is then a element of $\Omega^{0}(M ; \operatorname{End}(T M))$ rather than $\Omega^{1}(M ; T M)$.) From the last homework assignment, the connection ∇ on $T M$ induces a connection on $\operatorname{End}(T M)$ (see problems 2cd on the last assignment). With this induced connection, treating I as a section of $\operatorname{End}(T M)$, we have $\nabla I=0 \in \Gamma\left(\operatorname{End}(T M) \otimes T^{*} M\right)=$ $\Omega^{1}(M ; \operatorname{End}(T M))$.
(b) Suppose $\tau^{\nabla}=0$. Then, viewing I as a $T M$-valued 1 -form, by part (a) we have $d_{\nabla} d_{\nabla} I=d_{\nabla}(0)=0 \in \Omega^{3}(M ; T M)$. But by problem $3 \mathrm{~d}(\mathrm{ii})$, we also have $d_{\nabla} d_{\nabla} I=F^{\nabla}(I) \in \Omega^{3}(M ; T M)$. Hence $F^{\nabla}(I)=0$.

In particular " $F^{\nabla}(I)=0$ " holds if ∇ is the Levi-Civita connection for a Riemannian metric g. Use the definition of $F^{\nabla}(I)$ (plus the equation $F^{\nabla}(I)=0$) to derive a symmetry of the Riemann tensor that we have derived by other means.
8. Connections on the pulled-back tangent bundle. Let $F: N \rightarrow M$ be a smooth map of manifolds. As discussed last semester, a vector field on N does not, in general, push forward to a vector field on M. However, it does push forward to a section of the pulled-back tangent bundle: Given $X \in \Gamma(T N)$, we can define a section $\hat{X} \in \Gamma\left(F^{*} T M\right)$ by

$$
\begin{equation*}
\hat{X}_{p}:=F_{p}^{\sharp}\left(F_{* p} X_{p}\right) \tag{1.13}
\end{equation*}
$$

(a) Let ∇^{\prime} be an arbitrary connection on $F^{*}(T M)$ (not necessarily pulled back from a connection on $T M$). Consider the bilinear, antisymmetric "pseudo-torsion" map $\tilde{\tau}_{\psi}=\tilde{\tau}_{\psi}^{\nabla^{\prime}}: \Gamma(T N) \times \Gamma(T N) \rightarrow \Gamma\left(F^{*}(T M)\right)$ defined by

$$
\tilde{\tau}_{\psi}(X, Y)=\nabla_{X}^{\prime} \hat{Y}-\nabla_{Y}^{\prime} \hat{X}-\widehat{[X, Y]} .
$$

(The subscript ψ is for "pseudo"; there is no object " ψ " here.) Show that $\tilde{\tau}_{\psi}$ is $\mathcal{F}(N)$-bilinear, hence tensorial, defining a section $\tau_{\psi}=\tau_{\psi}^{\nabla^{\prime}} \in \Omega^{2}\left(N ; F^{*}(T M)\right)$.
(b) We may view (1.13) as the definition of a canonical $F^{*}(T M)$-valued 1-form I_{ψ} on N,

$$
I_{\psi}\left(X_{p}\right)=\hat{X}_{p}=F_{p}^{\sharp}\left(F_{* p} X_{p}\right) .
$$

Show that $\tau_{\psi}=d_{\nabla^{\prime}} I_{\psi}$.
(c) Show that if ∇^{\prime} is the pullback of a connection ∇ on $T M$ whose torsion is $\tau=\tau^{\nabla}$, then $\tau_{\psi}^{\nabla^{\prime}}=F^{*} \tau$, where we define $F^{*} \tau$ pointwise by

$$
\left(F_{p}^{*} \tau\right)_{p}\left(X_{p}, Y_{p}\right):=F_{p}^{\sharp}\left(\tau_{F(p)}\left(F_{* p} X_{p}, F_{* p} Y_{p}\right)\right), \quad p \in N .
$$

Hint: Fix an arbitrary point $p \in N$ and let $\left\{x^{i}\right\},\left\{y^{i}\right\}$ be local coordinates on a neighborhood of $p, F(p)$ respectively. Compute $\tilde{\tau}_{\psi}\left(\frac{\partial}{\partial x^{i}}, \frac{\partial}{\partial x^{j}}\right)$. The Jacobian $\left(\frac{\partial y^{i}}{\partial x^{j}}\right)$ will enter your calculation.

[^0]: ${ }^{1}$ The reason we integrated over $S\left(X^{\perp}\right)$ in (1.1) and (1.2), rather than over $G_{2}^{X}\left(T_{p} M\right)$, is that $G_{2}^{X}\left(T_{p} M\right)$ is diffeomorphic to the projective space $\mathbf{R P}^{n-2}$, which is not orientable when n is even. However, whether or not a Riemannian manifold $\left(N, g_{N}\right)$ is orientable, the metric g_{N} induces a welldefined measure " $d \mu_{N}$ " on N; it's simply something that we did not discuss in the non-orientable case (it's not a differential form in that case). Therefore for any finite-dimensional inner-product space W, the projectization $\mathbf{P}(W)$ has a Riemannian metric, hence Riemannian measure $d \mu$, induced the by the natural two-to-one covering map $\pi^{\prime}: S(W) \rightarrow \mathbf{P}(W)$ and the standard Riemannian metric on $S(W)$. (Here we regard W as a Riemannian manifold with the standard Riemannian metric determined by the given inner product on W.) Using these facts it can be shown $\operatorname{Vol}\left(S\left(X^{\perp}\right)\right)=2 \operatorname{Vol}\left(G_{2}^{X}\left(T_{p} M\right)\right)$ and that

 $$
 \int_{S\left(X^{\perp}\right)}\left(\sigma \circ \pi_{X}\right) \omega=\int_{G_{2}^{X}\left(T_{p} M\right)} \sigma d \mu
 $$

 Thus (1.2) indeed represents the average value of the function $\left.\sigma\right|_{G_{2}^{X}\left(T_{p} M\right)}$ with respect to the induced measure on $G_{2}^{X}\left(T_{p} M\right)$.

