
Differential Geometry—MTG 6257—Spring 2018
Problem Set 4

Due-date: Wednesday, 4/25/18

Required problems (to be handed in): 2bc, 3, 5c, 5d(i).
In doing any of these problems, you may assume the results of all earlier problems

(optional or required).

Required reading: Remark 1.1; problem 2de; Remarks 1.3 and 1.4; problem 5ab;
Remark 1.5; the result of problem 6d; Remarks 1.6 and 1.7; problem 7a; problem 8.

Optional problems: All the ones that are not required.

1. Lemma for use in later problem(s). Let {yi} be standard coordinates on Rn,
let ω ∈ Ωn−1(Sn−1) be the standard volume form, and let Vol(Sn−1) =

∫
Sn−1 ω (the

volume of the standard, Euclidean, unit sphere). Show that for all i, j ∈ {1, . . . , n},∫
Sn−1

yiyj ω =
1

n
δij Vol(Sn−1).

(This can be done without any trigonometric integrals.)

2. Ricci tensor and scalar curvature. Let (M, g) be a Riemannian manifold. For
each p ∈M and X, Y ∈ TpM , the Riemann tensor defines a linear map TpM → TpM
by Z 7→ R(X,Z)Y . Define

Ric(X, Y ) = Ric|p(X, Y ) = tr(Z 7→ R(Z,X)Y ),

where “tr” denotes the trace. (This trace-operation is also called contraction of the
first and third factors of the tensor bundle TM ⊗T ∗M ⊗T ∗M ⊗T ∗M .) Thus, if {ei}
is an arbitrary basis of TpM and {θi} is the dual basis of T ∗pM ,

Ric(X, Y ) = 〈θi, R(ei, X)Y 〉.
Clearly the map (X, Y ) 7→ Ric|p(X, Y ) is bilinear, so Ric|p is an element of T ∗pM ⊗
T ∗pM . This tensor is called the Ricci tensor at p. Letting p vary, it is easily seen that
Ric|p depends smoothly on p, so Ric becomes a tensor field on M , called the Ricci
tensor (field) or the Ricci curvature.

(a) Show that with p, {ei}, {θi} as above, the Ricci tensor at p is given by

Ric = Rjl θ
j ⊗ θl,

where Rjl = Ri
jil

and where {Ri
jkl} are the components of the Riemann tensor at p with respect to the

given bases.
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(b) Show that the Ricci tensor is a symmetric tensor field: for all p ∈ M and all
X, Y ∈ TpM , we have Ric(X, Y ) = Ric(Y,X).

Suggestion: Compute the trace defining Ric(X, Y ) using an orthonormal basis of
TpM . Contraction with θi then becomes inner product with ei.

(c) Below, for any normed vector space V , we write S(V ) for the unit sphere centered
at the origin.

Assume that n = dim(M) ≥ 2. Recall that, at each p, the sectional curvature of
M at p is a map G2(TpM) → R, P 7→ σ(P). For X ∈ S(TpM) let X⊥ = {Y ∈
TpM : Y ⊥ X}. Let GX

2 (TpM) ⊂ G2(TpM) denote the set of all 2-planes in TpM that
contain X. There is a two-to-one map

πX : S(X⊥) → GX
2 (TpM),

πX(Y ) = P(X, Y ) := span{X, Y }.

The vector space X⊥ is a Riemannian manifold with the standard Riemannian
metric determined by gp|X⊥ ; thus S(X⊥) inherits a Riemannian metric. Orienting
X⊥ arbitrarily, and giving Sn−1 the induced orientation, we then obtain a volume
form form ωn−2 on S(X⊥). (The subscript here is just a reminder of the dimension
of S(X⊥).) Show that for X ∈ S(TpM),

∫
S(X⊥)

(σ ◦ πX) ωn−2 =

∫
S(X⊥)

σ(P(X, ·)) ωn−2 =
Vol(Sn−2)

n− 1
Ric(X,X). (1.1)

Remark 1.1 Hence

1

n− 1
Ric(X,X) =

1

Vol(S(X⊥))

∫
S(X⊥)

(σ ◦ πX) ωn−2 . (1.2)

Thus, up to the normalization constant 1
n−1 , the quantity Ric(X,X) represents the

average sectional curvature among all two-planes in TpM that contain X.1

1The reason we integrated over S(X⊥) in (1.1) and (1.2), rather than over GX
2 (TpM), is that

GX
2 (TpM) is diffeomorphic to the projective space RPn−2, which is not orientable when n is even.

However, whether or not a Riemannian manifold (N, gN ) is orientable, the metric gN induces a well-
defined measure “dµN” on N ; it’s simply something that we did not discuss in the non-orientable case
(it’s not a differential form in that case). Therefore for any finite-dimensional inner-product space W ,
the projectization P(W ) has a Riemannian metric, hence Riemannian measure dµ, induced the by the
natural two-to-one covering map π′ : S(W )→ P(W ) and the standard Riemannian metric on S(W ).
(Here we regard W as a Riemannian manifold with the standard Riemannian metric determined by
the given inner product on W .) Using these facts it can be shown Vol(S(X⊥)) = 2Vol(GX

2 (TpM))
and that ∫

S(X⊥)

(σ ◦ πX) ω =

∫
GX

2 (TpM)

σ dµ.

Thus (1.2) indeed represents the average value of the function σ|GX
2 (TpM) with respect to the induced

measure on GX
2 (TpM).
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Remark 1.2 Recall that for any finite-dimensional vector space V , any symmetric
bilinear form h : V × V → R is determined by its restriction to the diagonal: if we
know h(X,X) for all X ∈ V , then we know h(X, Y ) for all X, Y ∈ V . This follows
from the polarization identity

h(X, Y ) =
h(X + Y,X + Y )− h(X − Y,X − Y )

4
.

Furthermore, if V is equipped with a norm ‖ ‖, then for all nonzero X ∈ V we have
h(X,X) = ‖X‖2h(X̂, X̂), where X̂ = X/‖X‖. Thus, in the presence of a norm, a
symmetric bilinear form h can be completely recovered from the function fh (notation
just for this problem) that h determines on the unit sphere:

fh : S(V ) := {X ∈ V : ‖X‖ = 1} → R,

X 7→ fh(X) := h(X,X).

In particular, for each p ∈ M , the function fRic : S(TpM) ⊂ TpM carries all the
information of the Ricci tensor at p.

(d) Let gp : TpM → T ∗pM be the isomorphism induced by the inner product gp.
For any tensor hp ∈ T ∗pM⊗T ∗pM , we define the trace of hp with respect to gp, denoted
trgp(hp), to be the image of hp under the following composition maps

T ∗pM ⊗ T ∗pM
gp−1⊗id.−→ ∼=

canon.
Hom(TpM,TpM)

trace−→ R.

Applying this pointwise to any h ∈ Γ(Sym2(T ∗M)) gives a real-valued function
trg(h) : M → R.

Show that for h as above, p ∈M , {ei} any basis of TpM , g·· the matrix of gp with
respect to this basis, and g·· = (g··)−1,

trg(h)|p = gijhij = hii = hi
i ,

where hij = h(ei, ej).

(e) The scalar curvature or Ricci scalar is the real-valued function R = trg(Ric)
on M . Show that at each p ∈M ,

R(p) =
n

Vol(Sn−1)

∫
S(TpM)

fRic ωn−1 ,

where fRic is as in Remark 1.2 and ωn−1 is the volume form on the sphere S(TpM)
induced by the metric gp and an arbitrary choice of orientation of TpM .
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Remark 1.3 Thus the “normalized scalar curvature” 1
n
R(p) is simply the average

value of the function S(TpM)→ R, X 7→ Ric(X,X). But for each X ∈ S(TpM), the
quantity 1

n−1fRic(X) is itself an average of sectional curvatures, so scalar curvature
is sometimes thought of as a (normalized) “double average” of sectional curvatures.
However, the word “double” can be eliminated: it can be shown that 1

n(n−1) R(p) is

the average value of the sectional-curvature function σp : G2(TpM)→ R.

Remark 1.4 For r > 0 and p ∈ M , let Sn−1r (p), B̄n
r (p) denote, respectively, the

sphere {q ∈M | dg(q, p) = r} and the ball {q ∈M | dg(q, p) ≤ r}, i.e. the sphere and
closed ball of radius r and center p in the metric space (M,dg). Curvature affects the
growth-rate of the volumes of these spheres and balls with respect to the radius. A
remarkable fact is that, if we compare the volumes of these spheres and balls to their
Euclidean counterparts, then as r → 0 (with p fixed), the leading-order corrections
to the volumes as a function of r are governed entirely by the scalar curvature R(p).
Specifically, letting Sn−1r and B̄n

r (with no “p”) denote the Euclidean sphere and closed
ball, as r → 0 we have

Vol(Sn−1r (p)) = Vol(Sn−1r )

(
1− 1

6n
R(p)r2 +O(r3)

)
(1.3)

and

Vol(B̄n
r (p)) = Vol(B̄n

r )

(
1− 1

6(n+ 2)
R(p)r2 +O(r3)

)
(1.4)

(Needless to say, the Euclidean volume-dependencies on r are Vol(Sn−1r ) = Vol(Sn−11 )rn−1

and Vol(B̄n
r ) = Vol(B̄n

1 )rn.) Equations (1.3) and (1.4) quantify, asymptotically as
r → 0, the statement that “larger (sectional) curvature means smaller balls and
spheres.”

3. Pullback of a metric-preserving connection. Let M,N be manifolds, (E, h)
be a Riemannian vector bundle over M , and let f : N → M be smooth. Suppose
that ∇ is a connection on E that preserves the metric h. (Here “metric” is used in
the sense of vector bundles: h is a smooth field of inner products on the fibers of E,
not the fibers of TM [unless E = TM ]). Show that the pulled-back connection f ∗∇
preserves the pulled-back metric f ]h.

Remember that the definition of f ]h does not involve any derivatives of f ; (f ]h)p
is simply the inner product on Ef(p) ∼=canon. (f ∗E)p .

4. The “wedge-bracket” operation. (a) Let V be a finite-dimensional vector
space and let A be an algebra. (Our only applications will be the associative algebras
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A = Mk×k(R) and A = End(W ) for some finite-dimensional vector space W ; you
may assume A is one of these if it helps you understand this problem.) For B,C ∈ A,
we write [B,C] = BC − CB.

Show that for all j, l ≥ 0, there is a unique bilinear map

[·, ·] : (A⊗
∧jV ∗)× (A⊗

∧lV ∗)→ A⊗
∧j+lV ∗

(the “wedge-bracket” operation) such that

[B ⊗ ω,C ⊗ η] = BC ⊗ (ω ∧ η)− (−1)jlCB ⊗ (η ∧ ω) = [B,C]⊗ (ω ∧ η) (1.5)

for all B,C ∈ A, ω ∈
∧pV ∗, η ∈

∧lV ∗.

(b) Show that for ξ ∈ A⊗
∧jV ∗ and ζ ∈ A⊗

∧lV ∗ we have

[ξ, ζ] = (−1)jl+1[ζ, ξ]. (1.6)

(Thus the wedge-bracket operation is antisymmetric if either j or l is even, and
symmetric if both j and l are odd.)

(c) Let E be a vector bundle over a manifold M and let k ≥ 1. For p ∈M , let Ap
be either of the algebras End(Ep), Mk×k(R). Show that the wedge-bracket operation,
applied pointwise, yields bilinear maps

[·, ·] : Ωj(M ; End(E))× Ωl(M ; End(E))→ Ωj+l(End(E))

and

[·, ·] : Ωj(M ;Mk×k(R))× Ωl(M ;Mk×k(R))→ Ωj+l(Mk×k(R)),

satisfying (1.5) and (1.6) pointwise.

5. Covariant exterior derivative. Let E be a vector bundle over a manifold M . As
in class, we will use the abbreviated notation “Ωj(E)” for Ωj(M ;E) = Γ(E⊗

∧jT ∗M).

(a) Let j, l ≥ 0.

(i) Show that there is a unique bilinear map ∧ : Ωj(E) × Ωl(M) → Ωj+l(E),
(α, ω) 7→ α ∧ ω, satisfying

(s⊗ η)p ∧ ωp = sp ⊗ (η ∧ ω)p for all p ∈M. (1.7)

(ii) Show that there is a unique bilinear map Ωj(End(E)) × Ωl(E) → Ωj+l(E)
satisfying

((A⊗ η)p, (s⊗ ω)p) 7→ Ap(sp)⊗ (ηp ∧ ωp) for all p ∈M. (1.8)
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(In this equation, the endomorphism Ap is applied to the vector sp ∈ Ep, while
the

∧∗T ∗pM -factors are wedged together.) Henceforth we omit the subscript p
equations like (1.7) and (1.8), understanding that an equation like “(s⊗η)∧ω =
s⊗ (η ∧ ω)” is to be interpreted as a pointwise statement.

For F ∈ Ωj(End(E)) and ξ ∈ Ωl(E), we will write F (ξ) for the image of (F, ξ)
under the map defined pointwise by (1.8). Regrettably, the notation is not self-
explanatory, but (unlike for the wedge-bracket operation in problem 4) I know
of no wonderful notation for this combined endomorphism-evaluation/wedge-
product operation.

For the rest of this problem, let ∇ be a connection on E.

(b) Show that there is a unique linear map d∇ : Ω∗(E)→ Ω∗(E) that satisfies

d∇(s⊗ ω) = (∇s) ∧ ω + s⊗ dω (1.9)

for all s ∈ Γ(E), ω ∈ Ωj(M), j ≥ 0. We call d∇ the covariant exterior derivative
operator determined by ∇.

(c) Show that, for j ≥ 0, the operator d∇ : Ωj(E)→ Ωj+1(E) is not F -linear, but
that d∇ ◦ d∇ : Ωj(E)→ Ωj+2(E) is F -linear.

(d) Let F∇ ∈ Ω2(End(E)) be the curvature 2-form of ∇.

(i) Show that for every s ∈ Γ(E), d∇d∇s = F∇(s), where the notation is as in
(a)(ii) above (with j = 0).

(ii) Show, more generally, that for any j ≥ 0 and ξ ∈ Ωj(E), d∇d∇ξ = F∇(ξ).

Remark 1.5 Hence for a flat connection, the pair (Ω∗(E), d∇) is a cochain complex,
and cohomology is defined. Remember, however, that not every vector bundle admits
a flat connection. For those that do, the cohomology groups (in a given degree) defined
by different flat connections may not be isomorphic.

6. Bianchi identity. Let ∇ be a connection on a vector bundle E over a manifold
M . As seen in the previous assignment, ∇ canonically induces a connection on
End(E), which we will again denote ∇. Below, “matrix” always means k× k matrix,
where k = rank(E), and [·, ·] denotes the wedge-bracket operation on Mk×k-valued
differential forms (see problem 4).

(a) Let {sα} be a local basis of sections of E, say on the open set U ⊂M , and let Θ
be the corresponding connection form for the connection on E. For A ∈ Γ(End(E)|U)
let Â be the matrix-valued function for which Â(p) is the matrix of the endomorphism
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Ap of Ep with respect to the basis {sα(p)}. Show that the corresponding matrix
representation of d∇A is

(d∇A)̂ = dÂ+ [Θ, Â]. (1.10)

(b) Let {sα}, U,Θ be as in (a), but now let A ∈ Ωj(U ; End(E)|U) for arbitrary j,
and let Â ∈ Ω1(U ;Mk×k(R)) be the corresponding matrix-valued j-form. Show that
(1.10) still holds.

(c) Let {sα}, U,Θ be as in (i). Recall that the corresponding representation of the
curvature F∇|U as a matrix valued 2-form is F̂ = dΘ + Θ ∧Θ. Show that

dF̂ = −[Θ, F̂ ].

(d) Use parts (b) and (c) to deduce the Bianchi identity

d∇F
∇ = 0 ∈ Ω3(M ; End(E)) = Γ(End(E)⊗

∧3T ∗M). (1.11)

Remark 1.6 In the bundle

End(E)⊗
∧3T ∗M = E ⊗ E∗ ⊗

∧3T ∗M ⊂ E ⊗ E∗ ⊗ T ∗M ⊗ T ∗M ⊗ T ∗M,

there is (for general E) no relation between the first two factors of the tensor product
and the last three factors. However, if E = TM , then

End(E)⊗
∧3T ∗M ⊂ TM ⊗ T ∗M ⊗ T ∗M ⊗ T ∗M ⊗ T ∗M,

a tensor bundle in which all the factors are related to each other. Given a section of
this bundle, we can, for example, contract the first and third factors (as we did to
get Ric from the Riemann tensor), obtaining a section of T ∗M ⊗ T ∗M ⊗ T ∗M . We
can then “raise an index” to obtain a section of TM ⊗ T ∗M ⊗ T ∗M , then contract
the first two factors (as we did to get R from Ric), obtaining a section of T ∗M . The
equation we get by applying this process to both sides of d∇F

∇ = 0, when F∇ is
the Riemann tensor, is an important identity called the (doubly) contracted Bianchi
identity.

(e) Show that following is equivalent to the Bianchi identity: for all vector fields
X, Y, Z on M ,

(∇XF
∇)(Y, Z) + (∇Y F

∇)(Z,X) + (∇ZF
∇)(X, Y ) = 0.
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Remark 1.7 For a Riemannian manifold (M, g) and a point p ∈ M , some simple
algebra shows that the sectional-curvature function σp = σ|G2(TpM) is constant if and
only if there is a constant cp such that for all X, Y, Z ∈ TpM ,

R(X, Y )Z = cp {g(Y, Z)X − g(X,Z)Y } .

(The number cp is then exactly the constant value of σp.) Thus, the function σp is
constant for every point p if and only if for some function f : M → R, we have

R(X, Y )Z = f {g(Y, Z)X − g(X,Z)Y }

for all vector fields X, Y, Z. Let us say in this case that M has fiberwise constant
sectional curvature.

If dim(M) = 2, then (M, g) automatically has fiberwise-constant sectional cur-
vature, since for every p ∈ M the fiber G2(TpM) is a single point. But it would
appear that if dim(M) > 2, fiberwise-constant sectional curvature is a weaker con-
dition than constant sectional curvature (the latter meaning that the whole function
σ : G2(TM)→ R is constant.) However, the contracted Bianchi identity can be used
to show that if M is connected and dim(M) > 2, then fiberwise-constant sectional
curvature implies constant sectional curvature. (Said another way: if the sectional-
curvature function is constant on each fiber of the bundle G2(TM), then it does not
even vary from fiber to fiber.)

This is actually a corollary of an even more surprising (and more general) fact.
A Riemannian manifold (M, g) is called an Einstein manifold if the Ricci tensor is
proportional to the metric at each point: Ric = fg for some f : M → R. If (M, g)
has fiberwise-constant sectional curvature then (M, g) is Einstein, but the converse
is false; thus “Einstein” is a more general condition. The contracted Bianchi identity
implies that if M is connected and dim(M) > 2, and (M, g) is Einstein, then the
function f in “Ric = fg” is constant.

7. Torsion and the covariant exterior derivative. Let M be a manifold. The
identity map I : TM → TM may be viewed as a TM -valued 1-form on M . (Note
that for a general vector bundle, there is no analog of this special 1-form.)

Let ∇ be a connection on TM .

(a) Show that
d∇I = τ∇, (1.12)

where the torsion tensor-field τ∇ is viewed as a TM -valued 2-form (just as is d∇I).
I.e. the torsion of a connection on TM is the covariant exterior derivative of the
“identity 1-form” I ∈ Ω1(M ;TM).

Remark 1.8 Above, we treated I as an element of Ω1(M ;TM); the object d∇I was
then an element of Ω2(M ;TM). But we may also view I as tensor field on M , a
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section of the bundle End(TM) = End(TM ⊗ T ∗M). (In terms of bundle-valued
differential forms, I is then a element of Ω0(M ; End(TM)) rather than Ω1(M ;TM).)
From the last homework assignment, the connection∇ on TM induces a connection on
End(TM) (see problems 2cd on the last assignment). With this induced connection,
treating I as a section of End(TM), we have ∇I = 0 ∈ Γ(End(TM) ⊗ T ∗M) =
Ω1(M ; End(TM)).

(b) Suppose τ∇ = 0. Then, viewing I as a TM -valued 1-form, by part (a) we
have d∇d∇I = d∇(0) = 0 ∈ Ω3(M ;TM). But by problem 3d(ii), we also have
d∇d∇I = F∇(I) ∈ Ω3(M ;TM). Hence F∇(I) = 0.

In particular “F∇(I) = 0” holds if ∇ is the Levi-Civita connection for a Rieman-
nian metric g. Use the definition of F∇(I) (plus the equation F∇(I) = 0) to derive a
symmetry of the Riemann tensor that we have derived by other means.

8. Connections on the pulled-back tangent bundle. Let F : N → M be a
smooth map of manifolds. As discussed last semester, a vector field on N does not,
in general, push forward to a vector field on M . However, it does push forward to a
section of the pulled-back tangent bundle: Given X ∈ Γ(TN), we can define a section
X̂ ∈ Γ(F ∗TM) by

X̂p := F ]
p(F∗pXp) (1.13)

(a) Let ∇′ be an arbitrary connection on F ∗(TM) (not necessarily pulled back from
a connection on TM). Consider the bilinear, antisymmetric “pseudo-torsion” map
τ̃ψ = τ̃∇

′

ψ : Γ(TN)× Γ(TN)→ Γ(F ∗(TM)) defined by

τ̃ψ(X, Y ) = ∇′X Ŷ −∇′Y X̂ − [̂X, Y ].

(The subscript ψ is for “pseudo”; there is no object “ψ” here.) Show that τ̃ψ is
F(N)-bilinear, hence tensorial, defining a section τψ = τ∇

′

ψ ∈ Ω2(N ;F ∗(TM)).

(b) We may view (1.13) as the definition of a canonical F ∗(TM)-valued 1-form Iψ on
N ,

Iψ(Xp) = X̂p = F ]
p(F∗pXp).

Show that τψ = d∇′Iψ.

(c) Show that if ∇′ is the pullback of a connection ∇ on TM whose torsion is τ = τ∇,
then τ∇

′

ψ = F ∗τ , where we define F ∗τ pointwise by

(F ∗p τ)p(Xp, Yp) := F ]
p

(
τF (p)(F∗pXp, F∗pYp)

)
, p ∈ N.

Hint: Fix an arbitrary point p ∈ N and let {xi}, {yi} be local coordinates on

a neighborhood of p, F (p) respectively. Compute τ̃ψ
(
∂
∂xi
, ∂
∂xj

)
. The Jacobian

(
∂yi

∂xj

)
will enter your calculation.
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