Differential Geometry—MTG 6257—Spring 2018
Problem Set 4
Due-date: Wednesday, 4/25/18

Required problems (to be handed in): 2bc, 3, 5¢, 5d(i).
In doing any of these problems, you may assume the results of all earlier problems
(optional or required).

Required reading: Remark 1.1; problem 2de; Remarks 1.3 and 1.4; problem 5ab;
Remark 1.5; the result of problem 6d; Remarks 1.6 and 1.7; problem 7a; problem 8.

Optional problems: All the ones that are not required.

1. Lemma for use in later problem(s). Let {y’} be standard coordinates on R",
let w € Q*71(S"') be the standard volume form, and let Vol(S"™') = [, , w (the
volume of the standard, Euclidean, unit sphere). Show that for all 4,j € {1,...,n},

- 1
/ y'y? w= =8, Vol(S"1).
Sn—1 n
(This can be done without any trigonometric integrals.)

2. Ricci tensor and scalar curvature. Let (M, g) be a Riemannian manifold. For
each p € M and X,Y € T,,M, the Riemann tensor defines a linear map T, M — T,M
by Z +— R(X,Z)Y. Define

Ric(X,Y) = Ric|,(X,Y) = tr(Z — R(Z,X)Y),

where “tr” denotes the trace. (This trace-operation is also called contraction of the
first and third factors of the tensor bundle TM @ T*M @ T*M @ T*M.) Thus, if {e;}
is an arbitrary basis of T,M and {#'} is the dual basis of Ty M,

Ric(X,Y) = (', R(e;, X)Y).

Clearly the map (X,Y’) + Ric|,(X,Y) is bilinear, so Ric|, is an element of TyM ®
Ty M. This tensor is called the Ricci tensor at p. Letting p vary, it is easily seen that
Ric|, depends smoothly on p, so Ric becomes a tensor field on M, called the Ricci
tensor (field) or the Ricci curvature.

(a) Show that with p, {e;}, {6} as above, the Ricci tensor at p is given by
Ric = R ¢ ®#,
where le = Rijil

and where {R';;} are the components of the Riemann tensor at p with respect to the
given bases.



(b) Show that the Ricci tensor is a symmetric tensor field: for all p € M and all
X,Y € T,M, we have Ric(X,Y) = Ric(Y, X).

Suggestion: Compute the trace defining Ric(X,Y") using an orthonormal basis of
T,M. Contraction with 6" then becomes inner product with e;.

(c) Below, for any normed vector space V', we write S(V') for the unit sphere centered
at the origin.

Assume that n = dim(M) > 2. Recall that, at each p, the sectional curvature of
M at pis a map Go(T,M) — R, P +— o(P). For X € S(T,M) let X+ ={Y €
T,M:Y L X}. Let GS(T,M) C G5(T,M) denote the set of all 2-planes in T, M that
contain X. There is a two-to-one map

mx  S(XH) — G (T,M),
x(Y) = P(X,Y):=span{X,Y}.
The vector space X+ is a Riemannian manifold with the standard Riemannian
metric determined by g,|y.; thus S(X*) inherits a Riemannian metric. Orienting

X+ arbitrarily, and giving S"~! the induced orientation, we then obtain a volume
form form w, 5 on S(X*). (The subscript here is just a reminder of the dimension

of S(X*).) Show that for X € S(T,,M),

/ (00 mx) wH:/ o(P(X, ) wnr = Y DR, x). (1)
S(xL) S(x+) n 1

Remark 1.1 Hence

: . _; OCOoTx) W
m—] Ric(X, X) = Vol(S(X 1)) /S(Xi)( X) Wn—2 - (1.2)

Thus, up to the normalization constant ﬁ, the quantity Ric(X, X) represents the

average sectional curvature among all two-planes in T,M that contain X." W

!The reason we integrated over S(X1) in (1.1) and (1.2), rather than over G5 (T,M), is that
G5 (T,M) is diffeomorphic to the projective space RP™2, which is not orientable when n is even.
However, whether or not a Riemannian manifold (N, gx) is orientable, the metric gy induces a well-
defined measure “duy” on N; it’s simply something that we did not discuss in the non-orientable case
(it’s not a differential form in that case). Therefore for any finite-dimensional inner-product space W,
the projectization P(W) has a Riemannian metric, hence Riemannian measure dy, induced the by the
natural two-to-one covering map 7’ : S(W) — P(W) and the standard Riemannian metric on S(W).
(Here we regard W as a Riemannian manifold with the standard Riemannian metric determined by
the given inner product on W.) Using these facts it can be shown Vol(S(X*)) = 2Vol(GZ¥ (T, M))
and that

/ (aowx)w:/ o du.
S(x+) GX (TpM)

Thus (1.2) indeed represents the average value of the function o| @ (1, M) With respect to the induced
measure on G5 (T,M).



Remark 1.2 Recall that for any finite-dimensional vector space V', any symmetric
bilinear form h : V x V — R is determined by its restriction to the diagonal: if we
know h(X, X) for all X € V, then we know h(X,Y) for all X,Y € V. This follows
from the polarization identity

MX+Y, X+Y)-h(X-Y,X-Y)

hX,Y) = : .

Furthermore, if V' is equipped with a norm || ||, then for all nonzero X € V' we have
hMX,X) = || X|2h(X,X), where X = X/||X||. Thus, in the presence of a norm, a
symmetric bilinear form h can be completely recovered from the function f;, (notation
just for this problem) that h determines on the unit sphere:

fn:S(V)={XeV:|X|=1} — R,
X = fuX):=h(X, X).

In particular, for each p € M, the function fric : S(I,M) C T,M carries all the
information of the Ricci tensor at p.

(d) Let g, : T,M — T>xM be the isomorphism induced by the inner product g,.
For any tensor h, € T;M @T; M, we define the trace of h, with respect to g,, denoted
trg, (hp), to be the image of h, under the following composition maps

TMeTM*—S5% =~ Hom(T,M,T,M) ™% R.

canon.

Applying this pointwise to any h € I'(Sym?(T*M)) gives a real-valued function
try(h) : M — R.

Show that for h as above, p € M, {e;} any basis of T,M, g.. the matrix of g, with

respect to this basis, and ¢°* = (g..) ™",

trg(h)|, = g"hig = b’y = hi"
where h;; = h(e;, €;).

(e) The scalar curvature or Ricci scalar is the real-valued function R = tr,(Ric)
on M. Show that at each p € M,

n
R TRV ic n— Y
) Vol(51) /S(T,,M) Jric tn-1

where fric is as in Remark 1.2 and w,,_; is the volume form on the sphere S(7,M)
induced by the metric g, and an arbitrary choice of orientation of 7},M.
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Remark 1.3 Thus the “normalized scalar curvature” %R(p) is simply the average
value of the function S(7,M) — R, X — Ric(X, X). But for each X € S(7,M), the
quantity ﬁ fric(X) is itself an average of sectional curvatures, so scalar curvature
is sometimes thought of as a (normalized) “double average” of sectional curvatures.
However, the word “double” can be eliminated: it can be shown that n(n;—l) R(p) is

the average value of the sectional-curvature function o, : Go(T,M) - R. W

Remark 1.4 For r > 0 and p € M, let S*!(p), B*(p) denote, respectively, the
sphere {q € M | d,(q,p) = r} and the ball {g € M | dy(q,p) < r}, i.e. the sphere and
closed ball of radius r and center p in the metric space (M, d,). Curvature affects the
growth-rate of the volumes of these spheres and balls with respect to the radius. A
remarkable fact is that, if we compare the volumes of these spheres and balls to their
Euclidean counterparts, then as r — 0 (with p fixed), the leading-order corrections
to the volumes as a function of r are governed entirely by the scalar curvature R(p).
Specifically, letting S?~! and B" (with no “p”) denote the Euclidean sphere and closed
ball, as » — 0 we have

Vol(S; ™! (p)) = Vol(S; ™) <1 - 6% R(p)r? + O(r3)> (1.3)

and

Vol(B"(p)) = Vol(B") (1 - R(p)r? + O(rg)) (1.4)

6(n+ 2)
(Needless to say, the Euclidean volume-dependencies on r are Vol(Sp~1) = Vol(Sp~")rm
and Vol(B}') = Vol(B})r".) Equations (1.3) and (1.4) quantify, asymptotically as

r — 0, the statement that “larger (sectional) curvature means smaller balls and
spheres.”

3. Pullback of a metric-preserving connection. Let M, N be manifolds, (E,h)
be a Riemannian vector bundle over M, and let f : N — M be smooth. Suppose
that V is a connection on E that preserves the metric h. (Here “metric” is used in
the sense of vector bundles: h is a smooth field of inner products on the fibers of F,
not the fibers of TM [unless E = T'M]). Show that the pulled-back connection f*V
preserves the pulled-back metric f*h.

Remember that the definition of f*h does not involve any derivatives of f; (f*h),
is simply the inner product on Eyp) = (f*E), .

canon.

4. The “wedge-bracket” operation. (a) Let V be a finite-dimensional vector
space and let A be an algebra. (Our only applications will be the associative algebras



A = M (R) and A = End(W) for some finite-dimensional vector space W; you
may assume 4 is one of these if it helps you understand this problem.) For B, C € A,
we write [B,C] = BC — CB.

Show that for all 5,1 > 0, there is a unique bilinear map

[ (ARNVH) x (A ANV = A ATV
(the “wedge-bracket” operation) such that
[BRw,C®n =BC®wWAn) —(—1)Y'CB® (nAw)=[B,Cl®wAn) (1.5
for all B,C € A,w € N°V*,n € N'V*.
(b) Show that for ¢ € A® A’V* and ¢ € A® A\'V* we have
6,¢] = (—1)1[C, €], (1.6)

(Thus the wedge-bracket operation is antisymmetric if either j or [ is even, and
symmetric if both j and [ are odd.)

(c) Let E be a vector bundle over a manifold M and let k£ > 1. For p € M, let A,
be either of the algebras End(E,), Mjx,(R). Show that the wedge-bracket operation,
applied pointwise, yields bilinear maps

[-]: Q(M;End(E)) x Q(M;End(E)) — Q™ (End(E))
and
[, ]+ Q7 (M My (R)) x Q' (M My (R)) — 7 (M, (R)),
satisfying (1.5) and (1.6) pointwise.

5. Covariant exterior derivative. Let E be a vector bundle over a manifold_M . As
in class, we will use the abbreviated notation “Q7(E)” for O (M; E) = T(EQNT*M).

(a) Let 7,1 > 0.

(i) Show that there is a unique bilinear map A : Q/(E) x Q{(M) — QITY(E),
(v, w) — a A w, satisfying

(s@n)p ANwp =15, (nAw), forall pe M. (1.7)

(ii) Show that there is a unique bilinear map Q7(End(E)) x QYE) — QIY(E)
satisfying

(A®@n)p, (s @w)y) = Ap(sy) @ (np, Awy,) for all pe M. (1.8)
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(In this equation, the endomorphism A, is applied to the vector s, € E,, while
the A™1 M-factors are wedged together.) Henceforth we omit the subscript p
equations like (1.7) and (1.8), understanding that an equation like “(s®@n)Aw =
s® (n Aw)” is to be interpreted as a pointwise statement.

For F' € (Y (End(F)) and ¢ € QY(F), we will write F(£) for the image of (F, €)
under the map defined pointwise by (1.8). Regrettably, the notation is not self-
explanatory, but (unlike for the wedge-bracket operation in problem 4) I know
of no wonderful notation for this combined endomorphism-evaluation/wedge-
product operation.

For the rest of this problem, let V be a connection on E.

(b) Show that there is a unique linear map dy : Q*(E) — Q*(E) that satisfies
dy(s®@w) = (V) Aw+ s ® dw (1.9)

for all s € T'(E), w € Y (M), j > 0. We call dy the covariant exterior derivative
operator determined by V.

(c) Show that, for j > 0, the operator dy : O/ (E) — QT(E) is not F-linear, but
that dy o dy : Y (E) — QT%(E) is F-linear.

(d) Let FY € Q*(End(E)) be the curvature 2-form of V.

(i) Show that for every s € T'(E), dydys = FY(s), where the notation is as in
(a)(ii) above (with j = 0).

(i) Show, more generally, that for any j > 0 and & € V(E), dydvé = FY ().

Remark 1.5 Hence for a flat connection, the pair (2*(E), dy) is a cochain complex,
and cohomology is defined. Remember, however, that not every vector bundle admits
a flat connection. For those that do, the cohomology groups (in a given degree) defined
by different flat connections may not be isomorphic. W

6. Bianchi identity. Let V be a connection on a vector bundle £ over a manifold
M. As seen in the previous assignment, V canonically induces a connection on
End(FE), which we will again denote V. Below, “matrix” always means k X k matrix,
where k = rank(F), and [-, ] denotes the wedge-bracket operation on My x-valued
differential forms (see problem 4).

(a) Let {s4} be alocal basis of sections of E, say on the open set U C M, and let ©
be the corresponding connection form for the connection on E. For A € I'(End(E)|v)
let A be the matrix-valued function for which A(p) is the matrix of the endomorphism



A, of E, with respect to the basis {s,(p)}. Show that the corresponding matrix
representation of dy A is

(dyA)' = dA + (O, A). (1.10)

(b) Let {sa},U,© be as in (a), but now let A € O/ (U; End(E)|y) for arbitrary j,
and let A € QY(U; Mj»1(R)) be the corresponding matrix-valued j-form. Show that
(1.10) still holds.

(c) Let {sa},U,© be as in (i). Recall that the corresponding representation of the
curvature FV|y as a matrix valued 2-form is F' = d© + © A ©. Show that

dF = —[©, F).
(d) Use parts (b) and (c) to deduce the Bianchi identity
dyFY =0€ Q*(M;End(E)) = ['(End(E) @ \*T*M). (1.11)
Remark 1.6 In the bundle
End(E)Q N’ T"M = EQ E*@ N*T*M C EQE*Q@TMeT*MQT*M,

there is (for general ') no relation between the first two factors of the tensor product
and the last three factors. However, if E = TM, then

End(E) @ A*T*M € TM @T*M @ T*M @ T*M ® T*M,

a tensor bundle in which all the factors are related to each other. Given a section of
this bundle, we can, for example, contract the first and third factors (as we did to
get Ric from the Riemann tensor), obtaining a section of T*M & T*M & T*M. We
can then “raise an index” to obtain a section of TM ® T*M & T*M, then contract
the first two factors (as we did to get R from Ric), obtaining a section of 7*M. The
equation we get by applying this process to both sides of dyFY = 0, when FV is
the Riemann tensor, is an important identity called the (doubly) contracted Bianchi
identity. W

(e) Show that following is equivalent to the Bianchi identity: for all vector fields
XY, Zon M,

(VxEV)Y,Z)+ (VyFY)(Z,X) + (VzFV)(X,Y) = 0.



Remark 1.7 For a Riemannian manifold (M, g) and a point p € M, some simple
algebra shows that the sectional-curvature function o, = o|q,(z,um) is constant if and
only if there is a constant ¢, such that for all XY, Z € T,M,

R(X,Y)Z = oy {g(Y, 2)X — g(X, Z)Y'}.

(The number ¢, is then exactly the constant value of ¢,.) Thus, the function o, is
constant for every point p if and only if for some function f : M — R, we have

R(X,Y)Z = f{g(Y,2)X — g(X, 2)Y'}

for all vector fields X,Y, Z. Let us say in this case that M has fiberwise constant
sectional curvature.

If dim(M) = 2, then (M, g) automatically has fiberwise-constant sectional cur-
vature, since for every p € M the fiber Go(T,M) is a single point. But it would
appear that if dim(M) > 2, fiberwise-constant sectional curvature is a weaker con-
dition than constant sectional curvature (the latter meaning that the whole function
o : Go(TM) — R is constant.) However, the contracted Bianchi identity can be used
to show that if M is connected and dim(M) > 2, then fiberwise-constant sectional
curvature implies constant sectional curvature. (Said another way: if the sectional-
curvature function is constant on each fiber of the bundle G5(T'M), then it does not
even vary from fiber to fiber.)

This is actually a corollary of an even more surprising (and more general) fact.
A Riemannian manifold (M, g) is called an Einstein manifold if the Ricci tensor is
proportional to the metric at each point: Ric = fg for some f: M — R. If (M, g)
has fiberwise-constant sectional curvature then (M, g) is Einstein, but the converse
is false; thus “Einstein” is a more general condition. The contracted Bianchi identity
implies that if M is connected and dim(M) > 2, and (M, g) is Einstein, then the
function f in “Ric = fg¢” is constant.

7. Torsion and the covariant exterior derivative. Let M be a manifold. The
identity map I : TM — TM may be viewed as a T'M-valued 1-form on M. (Note
that for a general vector bundle, there is no analog of this special 1-form.)

Let V be a connection on T'M.

(a) Show that
dyl =1V, (1.12)

where the torsion tensor-field 7V is viewed as a T'M-valued 2-form (just as is dy[).
Le. the torsion of a connection on TM 1is the covariant exterior derivative of the
“identity 1-form” I € QY(M;TM).

Remark 1.8 Above, we treated I as an element of Q'(M;TM); the object dyI was
then an element of Q*(M;TM). But we may also view I as tensor field on M, a
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section of the bundle End(TM) = End(TM ® T*M). (In terms of bundle-valued
differential forms, I is then a element of Q°(M; End(TM)) rather than Q'(M;TM).)
From the last homework assignment, the connection V on 7'M induces a connection on
End(T'M) (see problems 2cd on the last assignment). With this induced connection,
treating / as a section of End(T'M), we have VI = 0 € I'(End(TM) @ T*M) =
OYM;End(TM)). B

(b) Suppose 7V = 0. Then, viewing I as a TM-valued 1-form, by part (a) we
have dydyl = dy(0) = 0 € Q3(M;TM). But by problem 3d(ii), we also have
dydyl = FV(I) € Q3(M;TM). Hence FV(I) = 0.

In particular “FV(I) = 0” holds if V is the Levi-Civita connection for a Rieman-
nian metric g. Use the definition of FV(I) (plus the equation FV(I) = 0) to derive a
symmetry of the Riemann tensor that we have derived by other means.

8. Connections on the pulled-back tangent bundle. Let F' : N — M be a
smooth map of manifolds. As discussed last semester, a vector field on N does not,
in general, push forward to a vector field on M. However, it does push forward to a
section of the pulled-back tangent bundle: Given X € I'(T'N), we can define a section
X e T(F*TM) by

X, = F:(F,X,) (1.13)

(a) Let V' be an arbitrary connection on F*(T'M) (not necessarily pulled back from
a connection on T'M). Consider the bilinear, antisymmetric “pseudo-torsion” map
7y =7y :T(TN) x T(TN) — T(F*(TM)) defined by

#(X,Y) = ViV — V4 X — [X,Y].

(The subscript ¢ is for “pseudo”; there is no object “¢»” here.) Show that 7, is
F(N)-bilinear, hence tensorial, defining a section 7, = va/ € O*(N; F*(TM)).

(b) We may view (1.13) as the definition of a canonical F*(T'M)-valued 1-form I, on
N,

I¢(Xp> - Xp - Fﬁ(F*po>-
Show that Ty = dv/[w.
(c) Show that if V"’ is the pullback of a connection V on T'M whose torsion is 7 = 7V,
then 7, " = F*r, where we define F*r pointwise by

(F;T)p(va Y,) = Fﬁ (TF(p)<F*poa F*;DYED)) , peN.
Hint: Fix an arbitrary point p € N and let {z'},{y’} be local coordinates on
a neighborhood of p, F'(p) respectively. Compute 7 (%, %). The Jacobian <%>

will enter your calculation.



