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1 Some notation and terminology for these notes

� Throughout, M is an arbitrary manifold and n = dim(M).

� For any vector bundle E over M :

1. πE : E →M denotes the projection map.

2. For each p ∈M , Ep := π−1E (p), the fiber of E over p.

3. We use the terminology set-theoretic section of E for any map s : M → E,
not necessarily smooth (or even continuous), such that πE ◦ s = idM . We
reserve the terminology section of E for a smooth set-theoretic section.

4. Γ(E) denotes the space of sections of E.

5. For s ∈ Γ(E), the value of s at p may be denoted s(p), sp, or s|p.
6. For U ⊂ M open and s ∈ Γ(E|U), the extension of s by 0 to M is the

set-theoretic section s̃ : M → E such that

s̃(p) =

{
s(p) if p ∈ U,
0 if p /∈ U.

7. Let p ∈ M , v ∈ Ep, and s ∈ Γ(E). We say that s is an extension of v, or
that s extends v, if s(p) = v.

8. If κ = rank(E) > 0, then for U ⊂M open, a basis of sections of E over U ,
or basis of sections of E|U , will mean an ordered κ-tuple {sµ ∈ Γ(E|U)}κµ=1

such that for all p ∈ U , {sµ(p)} is a basis of Ep. (This is an abuse of
terminology, but is convenient.)
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� We write F = F(M) = C∞(M) (the algebra of smooth functions M → R).
For any vector bundle E over M , there is a natural action of F on Γ(E): for
s ∈ Γ(E) and f ∈ F , we define fs ∈ Γ(E) by (fs)(p) = f(p)s(p). (It is easily
seen that the set-theoretic section fs is, indeed, smooth, hence an element of
Γ(E).) Thus the vector space Γ(E) is canonically an F -module.

2 F-linearity and tensoriality

In this section of these notes, E and F denote fixed, arbitrary vector bundles over
M .

Definition 2.1 Let L : Γ(E)→ Γ(F ) be a map.

1. We say that L is F-linear if L(s1 + s2) = L(s1) + L(s2) and L(fs) = fL(s)
for all s1, s2, s ∈ Γ(E) and all f ∈ F . (Thus every F -linear map is linear.)
Equivalent definitions are:

� L is F-linear if L is linear and L(fs) = fL(s) for all s ∈ Γ(E) and all
f ∈ F .

� An F-linear map Γ(E)→ Γ(F ) is a homomorphism of F -modules.

2. We say that L is tensorial if there exists a bundle homomorphism H : E → F
(covering the identity map idM), such that for all s ∈ Γ(E),

L(s) = H ◦ s. (1)

Correspondingly, if we are given a bundle homomorphism H : E → F , the
induced map L : Γ(E)→ Γ(F ) given by (1) will be denoted LH .

3. For s ∈ Γ(E) and p ∈ M , we say that L(s)|p depends only of value of s at p
if for all s1 ∈ Γ(E) with s1(p) = s(p), we have L(s)|p = L(s1)|p . In these
notes, we will say that L is determined by 0-jets if for all s ∈ Γ(E) and p ∈M ,
L(s)|p depends only of value of s at p.1

1“Determined by 0-jets” is a phrase invented just for these notes, in order to have a name by
which to refer to this property in Proposition 2.8. For any integer r ≥ 0, there is an object called
the r-jet of a section of E at a point. We do not define general r-jets in these notes, but the 0-jet of
a section s ∈ Γ(E) at a point p is simply the value s(p) ∈ Ep. In a sense that can be made precise,
an r-jet of a section s at p captures the “rth-order information” of s at p.
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Let Hom(E,F ) denote the vector bundle whose fiber at p is Hom(Ep, Fp).
2 Ob-

serve that there is a natural one-to-one correspondence

{bundle homomorphisms E → F} ←→ Γ(Hom(E,F )), (2)

H ←→ Ĥ. (3)

Specifically, given a homomorphism H : E → F and p ∈ M , the map H|Ep is a

linear map Ĥp : Ep → Fp , i.e. an element of the fiber Hom(E,F )p := Hom(Ep, Fp).

Smoothness of H implies smoothness of Ĥ (proof left to reader). Thus the map
p 7→ Ĥp is a section of Hom(E,F ). Conversely, given Ĥ ∈ Γ(Hom(E,F )), we can

define a map H : E → F by H(v) = Ĥπ
E
(v)(v) for all v ∈ E. By definition, Ĥp is

a (linear) map Ep → Fp for all p, so πF (H(v)) = πE(v). Smoothness of Ĥ implies
smoothness of H (proof left to reader). Thus H is a smooth map E → F covering
the identity map idM , and linear on fibers. By definition, H is therefore a bundle
homomorphism.

For the remainder of these notes, we use the notation (3) for the correspondence
(2).

Given H and Ĥ as above, the canonical isomorphism Hom(E,F )→ F ⊗E∗ iden-
tifies the section Ĥ with a section of F ⊗E∗. The action of Ĥ on a section s (yielding
the section LH(s) ∈ Γ(F )) is achieved by pointwise tensor-algebra operations:

Hom(E,F )p × Ep → (Fp ⊗ E∗p)⊗ Ep ∼=canon. Fp ⊗ E
∗
p ⊗ Ep → Fp

(Ĥp, sp) 7→ Ĥp ⊗ sp 7→ 〈Ĥp, sp〉 = (LH(s))p ,

(4)

where the last map is contraction on the last two factors of Fp ⊗E∗p ⊗Ep (the linear
map Fp ⊗ E∗p ⊗ Ep → Fp induced by the trilinear map Fp × E∗p × Ep → Fp given by
(w, α, v) 7→ 〈α, v〉w ). This is why we call a map L : Γ(E)→ Γ(F ) tensorial if there
exists a bundle homomorphism H : E → F satisfying relation (1).

We will show that for a linear map Γ(E) → Γ(F ), the notions of F -linearity,
tensoriality, and having the property of being determined by 0-jets, are equivalent.
We start with some lemmas we will need. Recall that a rank-k vector bundle E ′ over
a manifold M ′ is called trivial if there exists a bundle isomorphism E ′ →M ′ ×Rk.

Lemma 2.2 Let p ∈M . There exists a chart (U, φ) of M such that E|U is trivial.

2Since, for any finite-dimensional vector spaces V and W , the space Hom(V,W ) is canonically
isomorphic to W ⊗V ∗, and since F ⊗E∗ is a vector bundle over M , we can produce a vector-bundle
atlas for Hom(E,F ) by appropriately composing the canonical isomorphisms Hom(Ep, Fp)→ Fp⊗E∗

p

with vector-bundle-chart maps for F ⊗E∗. This ensures that Hom(E,F ) is indeed a vector bundle,
and not just the disjoint union of the vector spaces Hom(Ep, Fp).
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Proof: Let (U1, φ) be a chart of M with p ∈ U1. Let V be an open neighborhood of
p such that E|V is trivial. Let U = U1

⋂
V , φ = φ1|U . Then (U, φ) is a chart with

the desired property.

Lemma 2.3 Let p ∈ M , let (U, φ) be a chart of M such that E|U is trivial, let
B ⊂ Rn be an open ball with B ⊂ φ(U), and let V = φ−1(B). Suppose s ∈ Γ(E) is
a section supported in V (i.e. identically zero on the complement). Assume that
κ := rank(E) > 0. Then there exist a κ-tuple {tµ ∈ Γ(E)}κµ=1 and a κ-tuple
{hµ ∈ C∞(M)}κµ=1 such that (i) {tµ|V }κµ=1 is a basis of sections of E|V , and (ii)
s =

∑
µ h

µtµ.

The point of this lemma is to show that any s ∈ Γ(E) can be expressed globally
as a “linear” combination, with coefficients in F , of global sections of E that restrict
to a basis of sections of E|V .

Proof of Lemma 2.3: Let {sµ}κµ=1 be a basis of sections of E|U . Let ρ : M → R
be a smooth function such that ρ ≡ 1 on V and ρ ≡ 0 on M \ U .

Since {sµ} is a basis of sections of E|U , there exist unique smooth functions
fµ : U → R such that s|U =

∑κ
µ=1 f

µsµ. Since supp(s) ⊂ V ⊂ U , and the sµ are

linearly independent at each point of U , we have supp(fµ) ⊂ V for each µ. For each
µ the function ρ|Ufµ is smooth and supported in V ⊂ U , hence extends smoothly
by 0 to a function hµ : M → R (still supported in V ). Similarly, the section ρ|Usµ
is smooth and supported in U , hence extends smoothly by 0 to a section tµ of E,
supported in U .

Let s̃ =
∑κ

µ=1 h
µtµ. Then for p ∈ M \ V , we have s̃(p) = 0 = s(p), since s and

the hµ are supported in V . For p ∈ V , we have ρ(p) = 1, implying hµ(p) = fµ(p) and
tµ(p) = sµ(p), hence implying s̃(p) = s(p).

Therefore, we have the global equalities s = s̃ =
∑
hµtµ.

Lemma 2.4 Let L : Γ(E) → Γ(F ) be F-linear. Let p ∈ M , s ∈ Γ(E), and assume
that s(p) = 0. Then L(s)|p = 0.

Proof: It suffices to assume that κ := rank(E) > 0. Let (U, φ) be a chart of M such
that E|U is trivial and p ∈ U . Let B = Br(φ(p)) ⊂ Rn be the open ball of radius r
centered at φ(p) ∈ B, with r small enough that and B ⊂ φ(U). Let B1 = Br/2(φ(p)),
V = φ−1(B), and V1 = φ−1(B1). Let ρ : M → R be a smooth function such that
ρ ≡ 1 on V1 and ρ ≡ 0 on M \ V . Let s1 = ρs and s2 = (1− ρ)s; thus s = s1 + s2.

Since supp(s1) ⊂ V , Lemma 2.3 implies that we can write s1 =
∑κ

µ=1 h
µtµ for

some functions hµ ∈ C∞(M) and some sections tµ ∈ Γ(E) such that {tµ}κ1 is a basis
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of sections of E|V . Observe that s1(p) = 0. Since {tµ(p)} is a basis of Ep, it follows
that hµ(p) = 0 for each µ. The F -linearity of L implies that L(s1) =

∑
hµL(tµ).

Hence for all p ∈M , L(s1)p =
∑
hµ(p)L(tµ)|p = 0.

Again using F -linearity, L(s2)|p = (1 − ρ(p))L(s)|p = 0, since ρ(p) = 1. Hence
L(s)|p = L(s1)|p + L(s2)|p = 0.

Corollary 2.5 Let L : Γ(E)→ Γ(F ) be F-linear. Then L is determined by 0-jets.

Proof: Let p ∈M , let s1, s2 ∈ Γ(E), and assume that s1(p) = s2(p). Let s = s2− s1.
Then s(p) = 0, so by Lemma 2.4, L(s)|p = 0. Hence L(s2)|p = L(s+ s1)|p = L(s1)|p.

Lemma 2.6 (Extendability of sections defined at a point) Let p ∈ M ,
v ∈ Ep. There exists s ∈ Γ(E) that extends v.

Proof: Let V be an open neighborhood of p such that E|V is trivial, and let {sµ}κ1
be a basis of sections of E|V . Let {cµ ∈ R}κµ=1 be such that v =

∑
cµsµ(p).

Let ρ : M → R be a smooth function such that ρ(p) = 1 and supp(ρ) ⊂ V . Define
s′ ∈ Γ(E|V ) by s′ = ρ

∑
cµsµ; thus s′(p) = v. Let s be the extension of s′ by 0 to M .

Then s is smooth, hence a section of E, and s(p) = v.

Corollary 2.7 If L : Γ(E) → Γ(F ) is tensorial, then the bundle homomorphism H
in (1) is unique.

Proof: Let H1, H2 be bundle homorphisms E → F satisfying (1). Let H ′ = H2−H1

(defined pointwise). Then (H2 −H1)(s(p)) = 0 for all p ∈M, s ∈ Γ(E). Since for all
v ∈ E, there exists a section s ∈ Γ(E) extending v, it follows that (H2 −H1)(v) = 0
for all v ∈ E. Hence H2 = H1.

Proposition 2.8 Let L : Γ(E) → Γ(F ) be a linear map. Then the following are
equivalent:

(i) L is F-linear.

(ii) L is determined by 0-jets.

(iii) L is tensorial.
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Proof: We show “(iii) =⇒ (i) =⇒ (ii) =⇒ (iii).”

(iii) =⇒ (i): This follows immediately from (1) and the definition of “bundle
homomorphism covering the identity”.

(i) =⇒ (ii): This is Corollary 2.5.

(ii) =⇒ (iii): Assume that L is determined by 0-jets. For p ∈ M and v ∈ Ep,
define Ĥp(v) ∈ Fp by

Ĥp(v) := L(s)|p, (5)

where s is any extension of v to a section of E (such an extension exists by Lemma
2.6). Since L is determined by 0-jets, Ĥp(v) is well-defined; all extensions s of v
yield the same value of L(s)|p. Letting v vary over Ep , (5) therefore defines a map

Ĥp : Ep → Fp.

If s1, s2 are extensions of v1, v2 ∈ Ep to sections of E, and c1, c2 ∈ R, then then
c1s1 +c2s2 is an extension of c1v1 +c2v2 to a section of E. The linearity of L therefore
implies that, for each p, the map Ĥp : Ep → Fp is linear. Hence, letting p vary, we

obtain a set-theoretic section Ĥ of Hom(E,F ).

We next show that Ĥ is smooth. Let p ∈ M , let U be a neighborhood of p such
that E|U and F |U are trivial, and let {sµ}κ1µ=1, {σν}κ2ν=1, be bases of sections of E|U , F |U
respectively. Let {ξν}κ2ν=1 be the basis of sections of F ∗|U that is dual (pointwise) to
{σν}κ2ν=1. Let A : U → {κ2 × κ1 matrices} be the function defined pointwise by
expanding the elements Ĥq(sµ(q)) ∈ Fq in terms of the basis {σν(q)} of Fq:

Ĥq(sµ(q)) =

κ2∑
ν=1

σν(q)A
ν
µ(q), q ∈ U, 1 ≤ µ ≤ κ1 .

Alternatively, Aνµ(q) = 〈ξν |q, Ĥ(sµ(q))〉. To show that Ĥ is smooth at p, it suffices
to show that the each coefficient-function Aνµ is smooth at p.

Let ρ : M → R be a smooth function such that ρ ≡ 1 on some open neighborhood
V of p and ρ ≡ 0 on M \ U . The sections ρ|Usµ of E|U extend smoothly by 0 to
sections tµ of E, and we have tµ(q) = sµ(q) for all q ∈ V . Hence for q ∈ V ,

Aνµ(q) = 〈ξν |q, Ĥ(sµ(q))〉 = 〈ξν |q, Ĥ(tµ(q))〉 = 〈ξν |q, L(tµ)|q〉 (6)

Since tµ ∈ Γ(E), L(tµ) is a (smooth) section of F . Hence both ξν and L(tµ) are
smooth on V , so (6) implies that the functions Aνµ are smooth on V . In particular,
they are smooth at p.
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Thus Ĥ is smooth at p. Since p was arbitrary, Ĥ ∈ Γ(E). Using the correspon-
dence (2)–(3), we obtain a bundle homomorphism H : E → F such that (1) holds.
Hence L is tensorial.

Notation 2.9 For vector bundles E,F over M , let HomF(Γ(E),Γ(F )) denote the
set of F -linear maps Γ(E)→ Γ(F ).

Remark 2.10 For L ∈ HomF(Γ(E),Γ(F )) let us write HL for what Corollary 2.7
t guarantees us is the unique bundle homomorphism H for which L = LH . (Thus
H = HL ⇐⇒ L = LH .) Then, using (2)–(3), we obtain a natural map

jEF : HomF(Γ(E),Γ(F )) → Γ(Hom(E,F )), (7)

L 7→ ĤL := (̂HL) .

Observe that HomF(Γ(E),Γ(F )) is a vector space—a subspace of Hom(Γ(E),Γ(F ))
—and, by Proposition (2.8), is precisely the space of tensorial maps Γ(E) → Γ(F ).
Furthermore, the space HomF(Γ(E),Γ(F )) is itself an F -module, and it is easily seen
that jEF is an F -module isomorphism.

Remark 2.11 A map L : Γ(E)→ Γ(F ) is called local if, for all p ∈M and s ∈ Γ(E),
the value of L(s)|p depends only on the germ of s at p.3 (If L is linear, then L is local if
and only if for every open set U ⊂M and every s ∈ Γ(E) such that s|U ≡ 0, we have
L(s)|U ≡ 0.) Obviously, if L depends only on 0-jets, then L is local, but the converse
is very far from true. Contained in the set of all local maps4 Γ(E)→ Γ(F ) is the set of
all differential operators Γ(E)→ Γ(F ). A differential operator Γ(E)→ Γ(F ) of order
0 is, by definition, a map that is determined by 0-jets. In these notes we do not define
what “differential operator Γ(E) → Γ(F )” means in general, but a true fact is that
for each integer r ≥ 0 there is a notion of differential operator of order r that, when
E and F are product bundles, reduces to exactly what one would expect. As one
might expect from the name “differential operator”, and the local nature of anything
that we generally call “differentiation”, any differential operator of any order is local.

3Germs of arbitrary maps f : X → Y , where X is a topological space, are defined analogously to
germs of real-valued functions on a manifold. For each p ∈ X, let N(p) denote the set of open neigh-
borhoods of p, and define a relation ∼p on the set {(U, g) : U ∈ N(p) and g : U → Y is a function}
by declaring (U1, g1) ∼p (U2, g2) ⇐⇒ U1 ∩U2 contains some V ∈ N(p) for which g1|V = g2|V . The
germ at p of f : X → Y is then defined to be the equivalence class of the pair (X, f) under the
relation ∼p.

4The term “local map” is being used here with the very specific meaning above. Outside this
context, the same term could be used to mean something very different, e.g. a map defined just on
some open subset of a topological space.
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3 F-multilinearity and tensoriality

For any vector spaces V,W , finite- or infinite-dimensional, we write Hom(V,W ) for
the space of all linear maps V → W . In this notation, we do not care if the vector
spaces are topologized, let alone whether our linear maps are continuous.

Definition 3.1 Let E1, E2, . . . , Er, F be vector bundles over M , and let
L : Γ(E1)× Γ(E2)× · · · × Γ(Er)→ Γ(F ) be a map.

1. We say that L is F-multilinear if for 1 ≤ i ≤ r, L is F -linear as a function of
its ith argument with the other arguments held fixed.

2. We say that L is tensorial if there exists a bundle homomorphism
H : E1 ⊗ E2 . . . ⊗ Er → F , covering the identity, such that for all si ∈ Γ(Ei),
1 ≤ i ≤ r,

L(s1, s2, . . . , sr) = H ◦ (s1 ⊗ s2 . . .⊗ sr). (8)

Here s1 ⊗ s2 . . . ⊗ sr is the section of E1 ⊗ E2 . . . ⊗ Er defined by pointwise
tensor-product:

(s1 ⊗ s2 . . .⊗ sr)|p = s1(p)⊗ s2(p) . . .⊗ sr(p) ∈ E1|p ⊗ E2|p . . .⊗ Er|p
∼=

canon.
(E1 ⊗ E2 . . .⊗ Er)p .

3. For si ∈ Γ(Ei), 1 ≤ i ≤ r, and p ∈ M , we say that L(s1, . . . , sr)|p depends only
of values of s1, . . . , sr at p if for all s′i ∈ Γ(Ei) with s′i(p) = si(p), 1 ≤ i ≤ r,
we have L(s′1, . . . , s

′
r)|p = L(s1, . . . , sr)|p . In these notes, we will say that L

is determined by 0-jets if for all si ∈ Γ(Ei), 1 ≤ i ≤ r, and p ∈ M , the value
L(s1, . . . , sr)|p depends only of values of s1, . . . , sr at p.

Note that from (2)–(3), we have a natural one-to-one correspondence

{bundle homomorphisms E1 ⊗ E2 ⊗ . . .⊗ Er → F}
←→ Γ(Hom(E1 ⊗ E2 ⊗ . . .⊗ Er, F )), (9)

which we will again denote by H ←→ Ĥ.

For any vector spaces V1, V2, . . . , Vr, Z, let Multihom(V1, . . . , Vr, Z) denote set of
multilinear maps V1×V2× · · ·×Vr → Z. (When r = 1, “Multihom” means the same
thing as “Hom”. For other small values of r we may replace the “Multi” in “Multi-
hom” by a more specific prefix, as in Bihom(V1 × V2, Z)5 and

5In some other notes, and in class in spring 2022, I have used the notation Bil(V ×W,Z) for
Bihom(V ×W,Z), and have used the notation ZV×W for Maps(V ×W,Z) (at least when Z = R).
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Trihom(V1 × V2 × V3, Z).) This set is a vector subspace of Maps(V1 × · · · × Vr, Z),
the space of all functions V1 × · · · × Vr → Z (with vector-space operations defined
pointwise: (f1 + f2)(p) = f1(p) + f2(p), etc.).

Recall that for any nonempty sets X1, . . . Xr, Z, where r ≥ 2, the natural map

Maps(X1 × · · · ×Xr, Z)
\→ Maps(X1,Maps(X2 × · · · ×Xr, Z)),

f 7→ f\ : x1 7→ f(x1, ·) (10)

is a one-to-one correspondence. (In (10), f\(x)1 = f(x1, ·) ∈ Maps(X2× · · · ×Xr, Z))
is the map that sends (x2, . . . , xr) to f(x1, x2, . . . , xr).) For vector spaces V1, . . . , Vr, Z,
one can easily verify that \ restricts to an isomorphism

\R : Multihom(V1 × · · · × Vr, Z)→ Hom(V1,Multihom(V2 × · · · × Vr, Z)).

Proposition 2.8 generalizes to the (F -)multilinear setting:

Proposition 3.2 Let E1, . . . Er, F be vector bundles over M and let
L : Γ(E1) × · · · × Γ(Er) → Γ(F ) be a multilinear map. Then the following are
equivalent:

(i) L is F-multilinear.

(ii) L is determined by 0-jets.

(iii) L is tensorial.

Proof: First suppose r = 2. We will show “(iii) =⇒ (i) =⇒ (ii) =⇒ (iii).”

(iii) =⇒ (i): This follows immediately from (8) in Definition 3.1.

(i) =⇒ (ii): Assume L is F -bilinear. Then for fixed s1 ∈ Γ(E1), the map
Γ(E2) → Γ(F ), s2 7→ L(s1, s2), is F -linear. Hence by Corollary 2.5, holding s1 fixed,
for p ∈ M the value L(s1, s2)|p depends only on the value of s2 at p. Similarly, with
s2 held fixed, the value L(s1, s2)|p depends only on the value of s1 at p. Hence given
p ∈ M , and sections s1, s

′
1 of E1, s2, s

′
2 of E2, such that si(p) = s′i(p) for i = 1, 2,

we have L(s′1, s
′
2)|p = L(s′1, s2)|p = L(s1, s2)|p. Hence L(s1, s2)|p depends only on the

values of s1 and s2 at p. Thus L is determined by 0-jets.

(ii) =⇒ (iii): Assume that L is determined by 0-jets. Let L′ = \R(L) ∈
Hom(Γ(E1),Hom(Γ(E2),Γ(F ))). Fix s1 ∈ Γ(E1). Then L′(s1) ∈ Hom(Γ(E2),Γ(F ))
depends only on 0-jets. Hence, by Proposition 2.8, L′(s1) is F -linear and tensorial, so
there exists a bundle homomorphism H(s1) : E2 → F such that L(s1, s2) = LH(s1)(s2).
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Letting s1 vary, we now have a map L′′ : Γ(E1) → Γ(Hom(E2, F )), s1 7→ Ĥ(s1).
Since L is linear, so is L′′, and since L is determined by 0-jets, so is L′′. Hence, using
Proposition 2.8 again, L′′ is tensorial, so there exists Ĥ ∈
Γ(Hom(E1,Hom(E2, F ))) such that for all p ∈ M , L(s1, s2)|p = (L′(s1))(s2)|p =(
Ĥp(s1(p))

)
(s2(p)). But using the canonical isomorphisms

Hom(E1,Hom(E2, F )) ∼=
canon.

Hom(E2, F )⊗ E∗1
∼=

canon.
F ⊗ E∗2 ⊗ E∗1

∼=
canon.

F ⊗ E∗1 ⊗ E∗2
∼=

canon.
F ⊗ (E1 ⊗ E2)

∗

∼=
canon.

Hom(E1 ⊗ E2, F ),

we can canonically identify Ĥ with a section of Hom(E1⊗E2, F ). It follows from the
correspondence (9) that L is tensorial.

The general-r case follows from similar arguments and induction.
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