
Differential Geometry—MTG 6257—Spring 2022
Problem Set 1

Due-date: Wednesday, Feb. 2

Required reading: all the problems. Some problems introduce terminology
and ideas you’ll need in later problems.

Required problems (to be handed in): 1a, 3c, 4, 5bef, 6cd, 7f. In doing any
of these problems, you may assume the results of all earlier problems (optional or
required).

Optional problems: All the ones that are not required.

1. Extension from a closed submanifold. This problem is another valuable
application of partitions of unity. You should find the arguments for all three parts
very similar to each other.

Let M be a manifold, Z ⊂M a submanifold that is closed as a subset of M .

(a) “Smooth Tietze Extension Theorem”. Suppose f : Z → R is a smooth func-
tion. Show that f can be extended to a smooth function M → R.

Note: This would be false without the hypothesis that Z is closed in M , even
if we were looking just for continuous extensions, and even if we required dim(Z) to
be strictly smaller than dim(M). (Example: M = S2, Z = equator \ {one point}.) If
your argument doesn’t use the hypothesis that Z is closed, you’ve made a mistake.
The same goes for parts (b) and (c).

(b) A vector field along Z is a section of TM |Z , i.e. a smooth map X : Z → TM ,
p 7→ Xp ∈ TpM . (We do not require Xp to be tangent to Z.) Show that a vector field
along Z can be extended to a vector field on M .

(c) Similarly, for k > 0 a k-form along Z is a map ω : Z →
∧kT ∗M , p 7→ ωp ∈∧kT ∗pM , smooth in the sense that if X1, . . . Xk are smooth vector fields along Z, then

p 7→ ω(X1, . . . , Xk)
∣∣
p

is smooth. Show that a k-form along Z can be extended to a

k-form on M .

2. Recall that a topological space X is arcwise connected (or path-connected) if for all
p, q ∈ X, there exists a continuous map γ : [0, 1] → X with γ(0) = p and γ(1) = q.
It is easily shown that every arcwise connected space is connected (a separation of
X would lead to a separation of [0, 1]), but there are connected spaces that are not
arcwise connected (the famous example being the “topologist’s sine curve”).

Show that a manifold M is connected if and only if M is arcwise connected. (You

may assume the “arcwise connected =⇒ connected” half of this iff; you need only show

the “connected implies arcwise connected” half.)

Note: This problem was inserted here because its result can be used to simplify argu-

ments in later problem-parts involving connectedness. However, most of those problem-
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parts can be done without any reliance on arcwise-connectedness.

3. Let n ≥ 1, let M and N be oriented n-dimensional manifolds, and let
F : N → M be a smooth map. Recall that at any point of M or N , a basis of
the tangent space is called either positively oriented or negatively oriented, according
to whether basis is or is not in the orientation class defined that manifold’s given
orientation.

(a) Let p ∈ N and suppose that the derivative F∗p : TpN → TF (p)M is an isomor-
phism. Show that if F∗p carries some positively oriented basis of TpN to a positively
oriented basis of TF (p)M , then F∗p carries every positively oriented basis of TpN to a
positively oriented basis of TF (p)M . Similarly, show that if F∗p carries some positively
oriented basis of TpN to a negatively oriented basis of TF (p)M , then F∗p does that
every positively oriented basis of TpN .

Part (a) shows that the following definition is unambiguous.

Definition. For a given p ∈ N , we say that F is orientation-preserving
at p (respectively, orientation-reversing at p) if F∗p carries positively ori-
ented bases of TpN to positively (respectively, negatively) oriented bases of
TF (p)M . We say that F is orientation-preserving (respectively, orientation-
reversing) if F is orientation-preserving at every p ∈ M (respectively,
orientation-reversing at every p ∈M).

Note that for F to be either orientation-preserving or orientation-reversing at a point
p, the map F∗p must be an isomorphism. Hence the only maps N → M that can
possibly be orientation-preserving or orientiation-reversing (globally) are local diffeo-
morphisms.

(b) For any p ∈ N or q ∈M , recall that the given manifold-orientations also define
what we mean by positive and negative elements of the 1-dimensional vector space∧n T ∗pN or

∧n T ∗qM . Show that F is orientation-preserving at p ∈ N (respectively,
orientation-reversing at p ∈ N) if and only if the pullback map F ∗ :

∧n T ∗F (p)M →∧n T ∗pN carries some, and hence any, positive element of
∧n T ∗F (p)M to a positive

(respectively, negative) element of
∧n T ∗pN .

(c) Assume that N is connected and that F : N → M is a diffeomorphism.
(i) Show that F is either orientation-preserving or orientation-reversing. (ii) Let
ω ∈ Ωn

c (M) (the space of n-forms of compact support). Show that F ∗ω has compact
support (ensuring that

∫
N
F ∗ω is defined), and prove the following:∫

N

F ∗ω = ±
∫
M

ω,

with the plus sign if F preserves orientation, and the minus sign if F reverses orien-
tation. (This fact is called invariance of the integral under diffeomorphism.)
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4. Let M and M̃ be manifolds of equal dimension, and assume that F : M̃ →M
is a submersion. Note that, for dimensional reasons and a homework problem from
last semester, “F is a submersion” is equivalent to F being a local diffeomorphism.

(a) Show that an orientation of M (if one exists) induces, via F , an orientation

on M̃ . (Hence if M is orientable, so is M̃ .)

For the remaining parts of this problem, assume that M̃ is compact and
that M is connected. Since F is already assumed to be a submersion, a homework
problem from last semester shows that F is surjective. Hence M = F (M̃) is compact
as well.

(b) Prove that F is a smooth covering map; i.e. that for all p ∈M there exists an
open neighborhood U of p such that F−1(U) is a disjoint union of sets Ũi for which
F |Ũi

: Ũi → U is a diffeomorphism. (Here i runs over some index set I(p), possibly
depending on p.)

(c) Prove that for all p ∈ M , the set F−1(p) is finite. (Recall that “F−1(p)” is

common but imprecise notation for F−1({p}).)

(d) Prove that the cardinality of the finite set F−1(p) is independent of p. This
finite common value—the number of points in the pre-image of any p ∈M—is called
the degree of F as a covering map.1 (More generally, we may use this definition of
degree of a covering map F any time the cardinality of F−1(p) is independent of p,

whether or not M̃ is compact or M is connected.)

(e) Assume that M is oriented, and give M̃ the induced orientation. Show that
for all ω ∈ Ωn(M), ∫

M̃

F ∗ω = (degF )

∫
M

ω.

(The compactness of M̃ and M ensures that both integrals are defined.)

5. Let M be an n-dimensional manifold, n ≥ 1. We can construct a manifold called
the orientation double-cover M̃ of M as follows. For each p ∈ M let Orn(p) denote
the set of orientations of TpM , a two-element set. Given σ ∈ Orn(p), we let −σ
denote the other orientation. As a set, let M̃ =

⋃
p∈M Orn(p). There is a natural

two-to-one map π : M̃ → M carrying both elements of Orn(p) to p. We give M̃ the

1In this coarse usage of the word “degree” for covering maps, the degree is always positive. For
more general maps between compact, oriented manifolds of equal dimension, there is a notion of
degree in which the degree can be positive, negative, or zero. For example, if M̃ = M = S1 = unit
circle in C, for 0 6= n ∈ Z the degree of the map z 7→ zn, as defined in this problem, is |n|. But
for these maps it makes sense to refine the definition of degree, and even include the case n = 0,
declaring the degree of z → zn to be n whether this integer is positive, negative, or zero. This refined
degree then classifies homotopy classes of maps S1 → S1; every continuous map is homotopic to
z 7→ zn for a unique n ∈ Z.
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topology induced by the map π (i.e. a set Ũ ⊂ M̃ is declared to be open if and only
if π(Ũ) is open).

It can be shown that every manifold has as an atlas {(Uα, φα)} for which all the
sets Uα and nonempty intersections Uα

⋂
Uβ are connected2. Let {(Uα, φα)}α∈A be

such an atlas for M . Then, for each α ∈ A, the set π−1(Uα) has two connected
components, which are distinguished from each other as follows. For p ∈ Uα let σα(p)
be the orientation of TpM pulled back by the map φα : Uα → Rn, where Rn has its
standard orientation. Each p̃ ∈ π−1(Uα) is, by definition, an orientation of Tπ(p)M ;
hence p̃ = ±σα(π(p̃)) (where “+σ” means σ). The sign in this formula is constant on
each connected component of π−1(Uα) (why?). We define Ũα,+ to be the component
on which p̃ = σα(π(p̃)), and Ũα,− to be the component on which p̃ = −σα(π(p̃)). We
define corresponding chart-maps φ̃α,± : Ũα,± → Rn as follows. Let r : Rn → Rn

be the reflection (x1, x2, . . . xn) 7→ (−x1, x2, . . . , xn). Then we define φ̃α,+ = φα ◦ π,
φ̃α,− = r ◦ φα ◦ π.

(a) Let Ã = A×{+,−}, an index set for the pairs (Ũα,±, φ̃α,±) constructed above.

Show that {Ũα̃, φ̃α̃}α̃∈Ã is an atlas for M̃ , hence that M̃ is a manifold. (You may

assume that paracompactness and Hausdorffness of M imply that M̃ has these properties.

This is not hard to show, but your time would be better spent on other problems in this

assignment.)

(b) Show that the atlas {Ũα̃, φ̃α̃}α̃∈Ã is oriented (whether or not M is orientable!).

Hence M̃ is orientable; even better, the construction above gives it a canonical ori-
entation, the one induced by this atlas. (It can be shown that this orientation is
independent of the atlas of M that we started with, but I’m not asking you to show
that.)

(c) Show that π : M̃ →M is a (smooth), degree-two covering map.

Discussion to set up part (d). From the definition of “covering map”, it is

easily shown that M̃ has the following “path-lifting property”: given any continuous
map γ : [0, 1] → M , and any p̃ ∈ π−1(γ(0)), there exists a unique continuous map

γ̃ : [0, 1]→ M̃ with γ̃(0) = p̃. (You may assume this, but you should be able to prove
it on your own, using nothing about manifolds other than that they are topological
spaces. The degree of the cover, or whether the cover even has finite degree, is also
irrelevant. The same argument works just as easily for any covering space of any
topological space.) For general covering spaces, such a curve γ̃ is called a lift of γ;

in the context of the orientation double-cover M̃
π−→ M we may call such a lift an

“orientation of M along γ”.

2It takes some non-trivial work to show this. Just assume it’s true for now.
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(d) Assume M is connected. Show that M is orientable if and only if M̃ is
not connected. (Thus, if we start with a non-orientable, connected M , we obtain a
counterexample to the [false] converse of the parenthetic conclusion of problem 4(b).)

For the case in which M is orientable, show that M̃ is diffeomorphic to M × Z2, the
disjoint union of two “copies” of M .

(e) Since every point in M̃ is an orientation of a vector space, there is a natural

map τ : M̃ → M̃ defined by τ(σ) = −σ (this map is called an involution, a term you
may recall from group theory, because τ ◦ τ is the identity map but τ itself is not the
identity map). Show that τ is an orientation-reversing map.

(f) Since M̃ is oriented, we may integrate any compactly supported n-form over

M̃ . Show that if ω ∈ Ωn(M) is compactly supported, then so is π∗ω, and∫
M̃

π∗ω = 0.

Hint for doing this quickly and elegantly: part (e).

6. Let M̃ be a manifold and suppose that F : M̃ → M̃ is a smooth involution with
no fixed-points. (Thus F ◦ F = idM , and for every p ∈M , F (p) 6= p.) Let ∼ be the

equivalence relation on M̃ generated by declaring p ∼ F (p). (Thus, the equivalence

class of p is the set {p, F (p)}.) Let M = M̃/ ∼, with the quotient topology.

(a) Show that every smooth involution (whether or not it has any fixed points) is
a diffeomorphism.

(b) Show that each p ∈ M̃ has an open neighborhood U such that U ∩F (U) = ∅.

(c) Show that the quotient-construction defining M determines, canonically, a
smooth structure on M .

(Idea: Show that M̃ has an atlas Ã such that the domain U of every chart in Ã
satisfies U ∩F (U) = ∅. Use such an atlas to construct an atlas A of M . Show that if

we apply this construction to any two atlases of M̃ [within the given maximal atlas

of M̃ ] that have the indicated property, that atlases of M we obtain are compatible,
and hence determine the same smooth structure on M . The last step is necessary
since atlases Ã of the type above are not unique.)

For the remainder of this problem, we regard M as a manifold with the
above natural smooth structure.

(d) Assume that M̃ is orientable.

(i) Show that if F is orientation-preserving, then M is orientable.

(ii) Show that if F is orientation-reversing and M̃ is connected, then M is not
orientable. (Note that to show that M is not orientable, it’s not sufficient to
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produce a non-oriented atlas! Every manifold, whether or not orientable, has
non-oriented atlases.)

Hint: Choose any p̃ ∈ M̃ . If M̃ is connected, problem 2 assures us that
there is a path in M̃ from p̃ to F (p̃). Consider the image of this curve under

the projection M̃ → M ; note that the curve in M̃ is a lift of the curve in M .
Show that assuming M is oriented leads to a contradiction.

7. Let n ≥ 1. For each p ∈ Rn+1, let ιp denote the canonical isomorphism
TpR

n+1 → Rn+1. Recall that the standard orientation of Rn+1 (as a vector space) is
the orientation-class of the standard basis of Rn+1. Regarding Rn+1 as a manifold
with a one-chart atlas {(Rn+1, id.)}, we obtain the standard orientation of Rn+1 (as a
manifold). (Equivalently, the latter orientation is defined at each p ∈ Rn+1 by using
the isomorphism ιp to pulls back the standard vector-space orientation of Rn+1 to
an orientation of the vector space TpR

n+1.) These orientations define what we will
mean by “positively-oriented” and “negatively oriented” mean for bases of Rn+1 and
TpR

n+1.
The standard inner product on Rn is the dot-product. At each p ∈ Rn+1, the

isomorphism ιp pulls this inner product back to an inner product on TpR
n+1. Below,

these inner products on Rn+1 and TpR
n+1 are intended in any reference to orthogo-

nality between vectors and/or subspaces, or to norms.

The standard unit (n + 1)-disk is the set Dn+1 := {v ∈ Rn+1 : ‖v‖ ≤ 1} ⊂ Rn+1.
As a subset of the manifold Rn+1, this disk is a domain with regular boundary. The
boundary, of course, is the standard unit sphere Sn. (You should be able to prove
these facts easily, but I’m not asking you to do that in this assignment.) Thus, the
standard orientation on the manifold Rn+1 induces an orientation on ∂Dn+1 = Sn,
This defines the standard orientation of Sn.

Below, for any p ∈ Sn, we regard TpS
n as a subspace of TpR

n+1.

(a) For each p ∈ Sn, define Np ∈ TpRn+1 by Np = i−1p (p). Check that the map
p 7→ Np is smooth, and hence defines a vector field N along Sn ⊂ Rn+1 (terminology
as in problem 1(b)). Check also that ‖Np‖ = 1.

(b) For each p ∈ Sn, show that TpS
n is the orthogonal complement of span(Np).

(Thus N is the outward-pointing unit normal vector field along Sn. The outward-
pointing property of N is another fact that should be able to prove these facts easily,
but that I’m not asking you to prove in this assignment.)

For the remainder of this problem, let F : Sn → Sn denote the antipodal
map, i.e the map p 7→ −p. (Note that, for a point p in a general manifold, there is no

such thing as “−p”; in defining this notation for p ∈ Sn, we are relying on the fact that Sn

is a subset of a vector space.)

(c) Check that F is a smooth involution (hence a diffeomorphism) with no fixed-
points.
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(d) Show that F preserves orientation if n is odd, and reverses orientation if n is
even.

For the remainder of this problem, let M = Sn/ ∼, where the equivalence
relation ∼ is the one generated by “p ∼ F (p)”, and where M is given the
induced smooth structure (see problem 6(c)).

(e) Show that M is diffeomorphic to the projective space RP n = P (Rn+1), as
defined in last semester’s first homework assignment.3

(f) Show that M (and therefore RP n) is orientable if and only if n is odd.

(g) Show that Sn “is” (more precisely, is diffeomorphic to) the orientation double-
cover of RP n if and only if n is even. (Part (e) shows that Sn is always some double-
cover of RP n, but a general double-cover of a manifold need not be the orientation
double-cover.)

3Another common definition of RPn is Sn/ ∼, but that’s not the definition we used. You’re
showing here that the two definitions yield the same manifold, up to diffeomorphism.
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