
Differential Geometry—MTG 6257—Spring 2022
Problem Set 2

Due-date: Monday, Feb. 28

Required reading: problems 1–8.

Required problems (to be handed in): 2cd, 2e(i), 2e(ii), 2g(ii), 4, 5, 6.
In doing any of these problems, you may assume the results of all earlier problems
(optional or required). Problems 1–5 were designed to be done in the given order,
without skipping anything, although problem 3 and problem-parts 1bd don’t help with
later problems. You should not even start on any hand-in part of problem 2 without
first reading-through problem1 (at least parts a,c,e) and all prior parts of problem 2.

Optional problems: All the ones that are not required.

1. Let n ≥ 1, let M be an n-dimensional oriented manifold and let D ⊂ M be a
domain with regular boundary.

(a) Show that M \D is also a domain with regular boundary. (As a set, the
boundary coincides with ∂D, of course.)

(b) The submanifold ∂D inherits an orientation from being the boundary of the
domain-with-regular-boundary D, and inherits an orientation from being the bound-
ary of the domain-with-regular-boundary M \D. How do these orientations compare?

For the remainder of this problem, fix ω ∈ Ωn
c (M).

(c) Since both D and M \D are domains with regular boundary, both
∫
D
ω and∫

M\D ω are defined. Show that∫
M

ω =

∫
D

ω +

∫
M\D

ω. (1.1)

(d) Suppose ω = dη for some η ∈ Ωn−1(M) for which supp(η) ∩ ∂D is compact.
Observe that Stokes’s Theorem can be applied to each of the three integrals in (1.1).
Check that your answer to part (c) is consistent with equation (1.1).

(e) Let p ∈ M . For ε > 0, let Bε(~0) and B̄ε(~0) denote, respectively, the open and
closed Euclidean ball of radius ε centered at ~0 ∈ Rn. Let (U, φ) be a chart of M
“centered” at p—i.e. a chart with p ∈ U and for which φ(p) = ~0. Then B̄ε(~0) ⊂ U
for all sufficiently small ε > 0. Restricting attention to such ε > 0 henceforth, let
Dε = φ−1(Bε(~0)). It is easily seen that Dε is a domain with regular boundary (check
this, but do not hand it in). Show that limε→0

∫
Dε
ω = 0, and deduce that∫

M

ω = lim
ε→0

∫
M\Dε

ω. (1.2)
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2. (Measure-zero sets in Rn and manifolds).
For λ > 0, let us call any translate of [0, λ]n = [0, λ] × [0, λ] × · · · × [0, λ] in Rn

(where n ∈ N is given) an n-cube of side λ. (Equivalently, an n-cube of side λ is a closed

`∞-ball of radius λ/2 in Rn.) For any n-cube C of side λ, we define the n-measure (or
n-volume) of C to be µn(C) := λn. When the intended n is clear from context, we
may simply write µ(C) and call this the measure of C.

Definition (measure-zero subset of Rn). A set Z ⊂ Rn has
(n-)measure zero if, for all ε > 0, Z can be covered by a countable1

collection of cubes {Ci} for which
∑

i µn(Ci) < ε.

(The definition above coincides with the definition of “Lebesgue-measure zero subset of

Rn ”. However, we are not doing measure theory here. We are not defining “measurable

set”, or “measure-(anything other than zero) subset of Rn.” The notion of “measure zero”

requires no measure theory; it is a much more primitive concept.)

Clearly, if Z ⊂ Rn has measure zero, then so does any subset of Z.

(a) Show that if, in the definition of “measure-zero subset of Rn”, we use “open
n-cubes (0, λ)n”, exactly the same subsets of Rn have measure zero. (Hence, at any
time later in this problem, if you find it convenient to use covers by open n-cubes
instead of closed n-cubes, you may do so.)

(b) Show a compact subset Z ⊂ Rn has n-measure zero if and only if for all ε > 0,
Z can be covered by a finite collection of cubes {Ci} for which

∑
i µn(Ci) < ε.

(c) For k ∈ N with k < n, show that Rk × {0Rn−k} has n-measure zero.

(d) Show that any countable union of measure-zero subsets of Rn has measure
zero.

Let U ⊂ Rn be a nonempty open set and let F : U ⊂ Rn → Rn be a C1 map.

(e) Let K ⊂ U be compact.

(i) Show that there exists a constant b > 0 such that if C is a cube of side λ
contained in K, then F (C) is contained in a cube of side bλ. (Hint: Lemma 7.2

in the updated “Review of Advanced Calculus” notes that are linked to this semester’s

class home page.)

(ii) Let Z ⊂ U . Show that if µn(Z ∩K) = 0, then µn(F (Z ∩K)) = 0.

(iii) Recall that U (or any open subset of Rn) admits an exhaustion by compact
subsets: a nested, increasing sequence of compact sets K1 ⊂ K2 ⊂ K3 ⊂ . . .
with

⋃∞
i=1Ki = U . (One such exhaustion can be constructed as follows. Let {pi}∞i=1

1I adhere to the convention countable sets may be finite or countably infinite. However, whether
we use this convention or the one in which “countable” means “countably infinite”, exactly the same
sets subsets of Rn have measure zero.
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be an enumeration of the points in U all of whose coordinates are rational. Choose

any norm on Rn, and for each j ∈ N, let rj > 0 be such that the closed ball

Vj := B̄ri(pi)—as defined by the given norm—lies in U . Then
⋃∞
j=1 Vj = U . For each

i ∈ N, let Ki =
⋃i
j=1 Vj . Then (Ki)

∞
i=1 is a nested, increasing sequence of compact

subsets of U , and
⋃∞
i=1Ki =

⋃∞
j=1 Vj = U .) Use this, and earlier parts of this

problem, to show that if Z ⊂ U and µ(Z) = 0, then µ(F (Z)) = 0.

In other words, a C1 map carries sets of measure zero to sets of measure
zero.

(f) Let U, V ⊂ Rn and let F : U → V be a diffeomorphism. (Recall that our

convention is that “diffeomorphism” means “C∞ diffeomorphism”. But for this problem-

part, the argument is the same whether we require diffeomorphisms to be C1, C∞, or

anything in between.) Let Z ⊂ U . Show that µn(Z) = 0 ⇐⇒ µn(F (Z)) = 0.

Definition (measure-zero subset of a manifold). Let M be an n-
dimensional manifold with maximal atlas A, and let Z ⊂ M . We say
that Z has measure zero (or measure zero in M), and write µn(Z) = 0 (or
simply µ(Z) = 0 when no confusion can arise) if for every chart (U, φ) ∈ A,
µn(φ(Z ∩ U)) = 0.

Note that since Rn is an n-dimensional manifold, we now have two potentially differ-
ent meanings of “measure zero subset of Rn. Part (g)(i), below, shows that there is
no ambiguity.

(g) Let M be an n-dimensional manifold and let Z ⊂M .

(i) Show that if M has an atlas A′ = {(Uα, φα)}α∈A (within the implicitly given
maximal atlas) such that µn(φα(Z ∩ Uα)) = 0, then µn(Z) = 0.

In other words: if Z can be covered by a collection of chart-domains Uα for
which φα(Z ∩ Uα) has measure zero, then Z has measure 0. In particular this
holds if M = Rn and A′ is the one-chart atlas {(Rn, id.)}.

(ii) Suppose that Z is a submanifold of M with positive codimension. Show that
µn(Z) = 0.

3. Topological aspects of measure-zero sets.

Two facts you may assume to do this problem:
(1) No cube in Rn has n-measure zero. (2) Every manifold is a Baire space,

meaning that the countable intersection of open, dense sets is dense.

Some topological terminology to recall: A subset A of a topological space is called
nowhere dense if its closure Ā has empty interior (equivalently, if Ā contains no
nonempty open set).

3



Clearly if Ā contains no nonempty open set, then neither does A. Hence the
complement of a nowhere-dense set is dense.

(a) Show that a closed measure-zero subset of a manifold is nowhere dense. (With-

out “closed”, this would be false, as the example of Q ⊂ R shows. Hence the complement
of a closed, measure-zero subset of a manifold is open and dense.

(b) Suppose Z ⊂M has measure zero and is σ-compact (i.e. the countable union
of compact sets). Show that the complement of Z is dense in M .

4. Recall that for a smooth map of manifolds, F : M → N , (i) a critical point of F
is a point p ∈ M for which F∗p is not surjective; (ii) a critical value of F is a point
q ∈ N for which F−1({q}) contains a critical point; and (iii) a regular value of F is
a point q ∈ N that is not a critical value. (Note that any point of N that is not in
image(F ) is automatically a regular value.)

Last semester we proved the Regular Value Theorem: If q ∈ N is a regular value
of F , then F−1({q}) is a submanifold of M . An important theorem often used in
conjunction with the Regular Value Theorem is:

Theorem 1.1 (Sard’s Theorem for C∞ maps2) Let M,N be manifolds and let
F : M → N be smooth. Then the set of critical values of F has measure zero.

You may assume Theorem 1.1. (For reasons of time, we are not proving it.)

Letting Crit(F ) ⊂ M denote the set of critical points of F , note that Sard’s Theorem

says nothing about Crit(F ) itself; the theorem says only that the image F (Crit(F )) has

measure zero in N . To illustrate this, consider a constant map M → N , with dim(N) > 0.

Every point in M is a critical point, but the set of critical values is a singleton subset of N ,

which indeed has measure zero.

Let M be a manifold, f : M → R a smooth function. Show that, for almost
every c ∈ range(f), the set f−1(c) is a codimension-one submanifold of M , and that
the sub-level set {p ∈ M : f(p) ≤ c} and super-level set {p ∈ M : f(p) ≥ c} are
domains with regular boundary. Here, “almost every c ∈ range(f)” means “every
c ∈ range(f) \ (some measure-zero subset of R).”

5. Measure-zero sets and the computation of integrals on manifolds.
Suppose M is a compact, oriented manifold of dimension n, and let ω ∈ Ωn(M).

(Compactness has been assumed just to shorten this problem.) Assume we are given
explicit formulas for ω—e.g., local-coordinate expressions for ω for each chart in some
atlas of M . How do we use this information to compute

∫
M
ω?

As mentioned in class, partitions of unity (POUs) are extremely useful for defining
integrals n-forms on M , and for proving various theorems. But as a computational
device, they’re completely useless (other than, perhaps, for numerical integration
using a computer); their formulas are intractible. Instead, we attempt to choose
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a collection of disjoint charts {(Ui, φi)} that cover all but a measure-zero subset of
M , and integrate over

⋃
i Ui without using any POU; in practice we can often find

a single, convenient chart (U, φ) that does the trick. (For example, in a two-chart

“stereographic-projection atlas of Sn, each chart-domain covers all but a single point of

Sn; in the “standard atlas” of M = RPn [respectively, CPn], each chart-domain covers

all of M except for a submanifold diffeomorphic to RPn−1 [respectively, CPn−1].) But
in general, ω|Ui will not have compact support, and the corresponding integral of
(φ−1

i )∗ω over Rn would be an improper integral. For example, suppose M = Sn, and
U = M \ {p := north pole}, and φ : U → Rn is stereographic projection through p,
then φ(U) = Rn. If ω|U = fdx1 ∧ · · · ∧ dxn in the corresponding local coordinates,
then f will not have compact support unless ω vanishes on an open neighborhood of
p. If we use stereographic projection through the south pole to define domains Dε

“centered” at p as in problem 1(e), then φ(M \Dε) = B̄1/ε(~0), the closed ball of radius
1/ε centered at the origin. Hence

∫
M
ω = limε→0

∫
M\Dε ω = limR→∞

∫
B̄R(~0)

(φ−1)∗ω =

limR→∞
∫
B̄R(~0)

f.

The equality “
∫
M
ω = limR→∞

∫
B̄R(~0)

f” in the Sn example is an illustration of the

principle that “measure-zero sets don’t affect integrals.” We have not defined integrals
of non-compactly-supported forms (for example, ω|Sn\{p} on the manifold Sn \ {p}),
and existence of the single limit limR→∞

∫
B̄R(~0)

f is not quite enough to show that∫
Rn f exists (for a general, continuous f)—but if we did show that

∫
Rn f exists in the

given example, then it would be reasonable to make the definition “
∫
Sn\{p} ω =

∫
Rn f”,

and conclude that
∫
Sn\{p} ω =

∫
M
ω; i.e. that the value of the integral is unaffected

if we delete the measure-zero set {p} from M . Below, in a more general setting, you
will carry out a version of this argument in way that avoids some technicalities and is
sufficient for computation of many integrals. One ingredient of this argument is the
following:

Proposition 1.2 (“Smooth Urysohn Lemma”) Let M be a manifold, let
Z ⊂ M be a closed set, and let U ⊂ M be an open neighborhood of Z. Then there
exists a smooth function χ̃ = χ̃Z,U : M → [0, 1], such that χ̃ is identically 1 on Z and
is identically 0 on M \ U .

You may assume the “Smooth Urysohn Lemma” below. The proof-strategy is similar
to the proof of the “Smooth Tietze Extension Theorem”; I will supply a proof in a
solutions handout for the first assignment.

For the remainder of this problem let M be a compact, oriented manifold of
dimension n, let ω ∈ Ωn(M). and let Z ⊂M be a closed subset of measure zero.

(a) Show that there exists a sequence {Kj ⊂ M}j=1 → ∞, such that (i) K1 ⊃
K2 ⊃ K3 ⊃ . . . , (ii)

⋂∞
j=1Kj = Z; (iii) for each j, the set Kj is a compact domain

with regular boundary and (iv) limj→∞
∫
Kj
ω = 0.

Hint: Apply the “Smooth Urysohn Lemma” to an appropriate, decreasing se-
quence (Uj)

∞
j=1 of open neighborhoods of Z, and use problem 4 for each j.
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(b) Show that, for any sequence (Kj) as in (a),
∫
M
ω = limj→∞

∫
M\Kj ω. Thus,

if M \ Z is contained in the domain of a chart (U, φ), and we define f : φ(U) → R
by (φ−1)∗ω = fdx1 ∧ · · · ∧ dxn in the standard coordinates on Rn, and define Vj =
φ(U \Kj) = φ(M \Kj) ⊂ Rn for each j, then

∫
M
ω = limj→∞

∫
M\Kj ω =

∫
Vj
f .

Thus we can compute
∫
M ω as the limit of a sequence of integrals

∫
Vj
f on Rn, where

V1 ⊂ V2 ⊂ V3 . . . . If φ(M \Z) = Rn and
∫
Rn f exists, then

∫
M ω = limj→∞

∫
Vj
f =

∫
Rn f .

6. Let D be a domain with regular boundary in an oriented n-dimensional manifold
M , where n ≥ 1 and let ∂D have the induced orientation. Let ω ∈ Ωj(M), η ∈ Ωk(M),
where j+k = n−1, and assume that at least one of the sets supp(ω)

⋂
D, supp(η)

⋂
D,

is compact. (Note that the compact-support assumption is superfluous if we assume
that M is compact or that D is compact.) Prove the “integration-by-parts” formula∫

D

dω ∧ η =

∫
∂D

ω ∧ η − (−1)j
∫
D

ω ∧ dη.

Remark. The case D = M (equivalently, ∂D = ∅) is important all by itself.

7. Let M be a manifold, X a vector field on M , and let ω ∈ Ωj(M), η ∈ Ωk(M).
Show that ιX(ω ∧ η) = (ιXω) ∧ η + (−1)jω ∧ ιXη.

8. “Explicit” Poincaré Lemma for star-shaped regions. The classical Poincaré Lemma
asserts that, for all n and all k > 0, every closed k-form on Rn is exact.

Recall that a set U in a vector space is star-shaped if there exists p ∈ U such that
for all q ∈ U , the line segment from p to q lies entirely in U . Given such p, we may say
that U is “star-shaped with respect to p”.3 In particular, Rn is star-shaped. In this
problem we establish that if U is an open star-shaped subset of Rn, then every closed
k-form on U (with k > 0) is exact. (Thus the Poincaré Lemma follows as a special
case.) There are many ways of showing this; the point of this problem is to give an
explicit formula that produces, for each closed form ω ∈ Ωk(U), a form η ∈ Ωk−1(U)
such that ω = dη.

It suffices to produce such a formula under the hypothesis that U is star-shaped
with respect to the origin, which we henceforth assume; a more general formula can
be obtained from this by applying a translation. The case n = 0 is trivial, so we also
assume n > 0.

Set-up. For t ∈ [0, 1] define Ft : Rn → Rn by Ft(x) = tx. Since U is star-shaped
with respect to the origin, Ft(U) ⊂ U . Let V be the vector field

∑
i x

i ∂
∂xi

. For k > 0
and ω ∈ Ωk(U), define P (ω) ∈ Ωk−1(U) by

P (ω) =

∫ 1

0

t−1F ∗t (ιV ω) dt,

3The set U is convex if it is star-shaped with respect to each of its points.
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interpreted pointwise:

P (ω)
∣∣
x

=

∫ 1

0

t−1 (F ∗t (ιV ω))
∣∣
x
dt. (1.3)

Despite appearances, this integral is not improper: if we write ω as∑
I fI dx

I , where the sum is over increasing multi-indices of length k, then
(F ∗t (ιV ω))

∣∣
x

=
∑

I t
kfI(tx) ιVxdx

I , so the integrand in (1.3) is O(tk−1) as t → 0.
(End of set-up.)

Your job: Show that if ω is closed, then ω = d(P (ω)) (and hence that ω is exact).

Remark 1. With U = R3, we have seen that there is a dictionary translating
between “curl of a vector field” (interpreting “vector field” as in Calc 3) and “d of
a 1-form”, and “between divergence of a vector field” and “d of a 2-form”. Given a
vector field X such that ∇ ·X = 0, the map P above (with k = 2) provides one way
to construct a vector field A such that X = ∇× A.4

Remark 2. As seen in class, for any connected manifold M we have H0
DR(M) =

R. Hence the Poincaré Lemma, generalized to star-shaped regions U as above, can
be written as

Hk
DR(U) ∼=

{
R if k = 0,
0 if k > 0.

(1.4)

More generally, (1.4) holds under the much weaker assumption that U is contractible
(you’re not allowed to assume this until/unless I have you prove it!), but it is harder
to write down an explicit formula analogous to “P (ω)” in that generality.

The next two problems, about de Rham cohomology, are inspired by the presen-
tation in Bott and Tu, Differential Forms in Algebraic Topology.

9. This problem gives a proof that, for any manifold M and any k ≥ 0,
Hk

DR(M ×R) ∼= Hk
DR(M). This fact, plus induction, plus the trivial fact that (1.4)

holds for U = R0, yield another proof of the Poincaré Lemma.
Below, we simply write “Hk” for “Hk

DR”.

Set-up. Fix a manifold M . For all (p, t) ∈M ×R, recall that we can canonically
identify T(p,t)(M × R) as TpM ⊕ TtR. There is a similar canonical identification of
cotangent spaces. Hence, letting t denote the standard coordinate on R, there is a
well-defined vector field on M ×R whose value at (p, t0) is (0TpM ,

∂
∂t

∣∣
t0

), which (with

4In case you know the relevant physics: this construction of a vector potential is not terribly
useful for E&M, since the regions in which we want to find vector potentials for the magnetic field,
e.g. R3 with a curve removed (for a wire carrying current) are never star-shaped.
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a slight abuse of notation) we will denote ∂
∂t

. Similarly, we have a well-defined 1-form
dt on M ×R.

For k ≥ 1, ω ∈ Ωk(M), and (p, t) ∈M ×R, the value of ω at (p, t) can be written
uniquely as ω′(p, t) + dt∧ω′′(p, t), where ω′(p, t) ∈

∧kT ∗pM and ω′′(p, t) ∈
∧k−1T ∗pM .

(This decomposition may also be characterized by:

ω′(p, t) = s∗t
(
ι∂/∂t(dt ∧ ω(p, t))

)
, ω′′(p, t) = s∗t

(
ι∂/∂t ω(p, t))

)
, (1.5)

where st : M → M × R is the map p 7→ (p, t). You may wish to convince yourself
of this by introducing local coordinates {xi} on M . We can then write ω(p, t) as∑
|I|=k aI dx

I +
∑
|J |=k−1 bJ dt∧ dxJ , where the sums are over increasing multi-indices

of the indicated lengths, and where if k = 1, we interpret the sum over J just as
b dt for some real number b. Then ω′(p, t) =

∑
|I|=k aI dx

I and ω′′ =
∑
|J |=k−1 bJ dx

J ,

which can be recovered from the coordinate-independent characterization (1.5).)
For each p, the map t 7→ ω′′(p, t) is a continuous (in fact smooth) function R →∧k−1T ∗pM . Hence we can define a linear map S : Ωk(M ×R)→ Ωk−1(M ×R) by

S(ω)
∣∣
(p,t)

=

∫ t

0

ω′′(p, s) ds;

for each p the right-hand side is an ordinary Riemann integral of a continuous vector-
valued function. For k = 0, we simply define S(ω) = 0. (End of set-up.)

(a) Make sense out of the following formula and show that it is true:

dω = dMω
′ + dt ∧

(
∂ω′

∂t
− dMω′′

)
.

(b) Show that for all ω ∈ Ωk(M),

d(S(ω)) + S(dω) = ω − π∗s∗0 ω, (1.6)

where π : M ×R → M is projection onto the first factor, and s0 : M → M ×R is
the map p 7→ (p, 0). Consequently, if ω is closed, then ω − π∗s∗0 ω is exact.5

(c) Recall that if F : N1 → N2 is a map of manifolds, we have F ∗(dµ) = d(F ∗µ)
for all differential forms µ on N2. This implies that, for all k ≥ 0, the linear map
F ∗ : Ωk(N1)→ Ωk(N1) carries closed forms to closed forms, and exact forms to exact
forms, and therefore induces a linear map Hk(N2)→ Hk(N1). It is common to denote
this map also as F ∗, but for clarity in this problem we will denote it as F ].

Show that the “chain rule for pullbacks”, (F ◦ G)∗ = G∗ ◦ F ∗, implies that for
maps F,G that are composable as indicated, we have (F ◦G)] = G] ◦ F ]. Show also
that if F : N → N is the identity map, then F ] : Hk(N)→ Hk(N) is also the identity
(for all k).

5Students who’ve taken algebraic topology will recognize (1.6) as saying that S is a cochain
homotopy, between the identity map and the map π∗s∗0, on the cochain complex Ω∗(M ×R).
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(d) Letting I denote the identity map Hk(M ×R)→ Hk(M × R), use parts (b)
and (c) to show that the map I − π] ◦ s]0 = 0 (the zero linear map), and hence that
π] ◦ s]0 = I.

(e) Observing that π ◦ s0 is the identity map of M , show that s]0 ◦ π] is the
identity map Hk(M)→ Hk(M). Combining this with part (d), deduce that the maps
π] : Hk(M) → Hk(M ×R) and s]0 : Hk(M ×R) → Hk(M) are isomorphisms, and
are inverse to each other.

(f) Show that H0(M ×R) ∼= H0(M). Combining this with part (e), we therefore
have

Hk(M ×R) ∼= Hk(M) for all k ≥ 0. (1.7)

10. Let M,N be manifolds, and for t ∈ R define st : M → M ×R by st(p) = (p, t).
Again let π : M ×R → M be projection onto the first factor. From problem 8, for
each k ≥ 0 the maps s]0 : Hk(M × R) → Hk(M) and π] : Hk(M) → Hk(M × R)
are isomorphisms and are inverse to each other. Similarly, for any t ∈ R the map
s]t : Hk(M ×R)→ Hk(M) is an isomorphism that inverts π].

Suppose that F0, F1 : M → N are smoothly homotopic maps, i.e. that there exists
a smooth map F : M× [0, 1]→ N such that F0 = F ◦s0 and F1 = F ◦s1. (M× [0, 1] is

not a manifold; it is an example of a manifold-with-boundary. For the interested student, I

have added problem 11 to define “manifold with boundary”. But an adequate definition of

“smooth map F : M × [0, 1]→ N” that does not require defining manifolds-with-boundary

is: For some open neighborhood U of M × [0, 1] in manifold M ×R, there is an extension

of F to a smooth map U → N .) Let h : R → [0, 1] be a smooth, monotone function
such that h(t) = 0 for t ≤ 0 and h(t) = 1 for t ≥ 1; we saw in the “Bump Function”
notes that such functions exist. Define F̃ : M × R → N by F̃ (p, t) = F (p, h(t)).
Then F̃ is smooth, and its restriction to M × [0, 1] is simply a reparametrization of
the homotopy F . The purpose of introducing F̃ is just to put us in the realm where
problem 8 applies directly.

(a) Show that for each k ≥ 0 we have F ]
0 = F ]

1 as maps Hk(N)→ Hk(M).

(b) Let G : M → N be a constant map (G(M) = {point}). Show that for k > 0,
G] : Hk(N)→ Hk(M) is the zero map, and that for k = 0 the map G] is injective.

(c) M is smoothly contractible if the identity map M →M is smoothly homotopic
to a constant map. Show that if M is smoothly contractible, then

Hk
DR(M) ∼=

{
R if k = 0,
0 if k > 0.

(1.8)

(This yields yet another proof of the Poincaré Lemma. The map Rn × [0, 1] →
Rn, (x, t) 7→ (1 − t)x, is a homotopy between the identity and a constant map , so
Rn is smoothly contractible.)
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Remark: A true fact beyond the scope of this course (because of subject matter,
not difficulty) is that if two smooth maps are homotopic, then they are smoothly
homotopic. With this fact established, the word “smoothly” can be removed from
“smoothly homotopic” and “smoothly contractible” in the above problem.

11. Manifolds with boundary. Recall that our original definition of “manifold
M” is equivalent to one in which M starts as a topological space (rather than inherit-
ing a topology from an atlas), and each chart-map is required to be homeomorphisms
from an open set in M to an open subset of Rn (for some n). For simplicity in this
problem, let us assume that we have defined “manifold” this latter way, and that
we have required all charts of M to have the same dimension (a condition satisfied
automatically if M is connected).

Notation: For n ≥ 1, let Rn
+ = Rn−1 × [0,∞) ⊂ Rn, which we may call closed

upper half-space of Rn. We give Rn
+ its induced topology as a subset of Rn.

Note that the boundary of Rn
+, as a subset of Rn, is Rn−1 × {0} =: ∂Rn

+. We
write the interior of Rn

+ (as a subset of Rn) as Int(Rn
+) = Rn−1 × (0,∞).

Below, we always assume n ≥ 1, and the abbreviation “mwb” stands for “manifold-
with-boundary”

A closed domain-with-regular-boundary in a manifold is an example of a manifold
with boundary, which can be defined by generalizing the definition of manifold as
follows:

1. Define a mwb chart of a topological space M is a pair (U, φ), where U ⊂ M is
open, φ is a map from U → Rn

+ for some n, and φ is a homeomorphism onto
its image φ(U).

2. If Û is an open subset of Rn, we call a function F : Û → Rn F smooth, or C∞,
if F extends to a smooth map Ũ → Rn for some Rn-open neighborhood Ũ of
Û . If, in addition, F is a homeomorphism onto its image, and F−1 : F (Û)→ Û
is smooth, we call F a diffeomorphism.

3. An n-dimensional mwb atlas on a topological spaceM is a collection {(Uα, φα)}α∈A
of n-dimensional mwb charts of M with the property that whenever Uα∩Uβ 6= ∅,
the “overlap map” φβ ◦ φ−1

α : φα(Uα ∩ Uβ) → φβa(Uα ∩ Uβ) is smooth. (Since
this map is automatically bijective and its inverse is a map of the same form
with α and β interchanged, any such overlap map is a diffeomorphism.)

Call a mwb atlas A on a topological space M maximal if A is not properly
contained in another mwb atlas for A. (Equivalently: call two mwb atlases on
M compatible if their union is a mwb atlases; note that any two such atlases
must be of the same dimension. Compatibility is an equivalence relation on the
set of mwb atlases of M . A maximal mwb atlas is the union of all mwb atlases
compatible with some given mwb atlas.)
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4. An n-dimensional manifold with boundary is a topological space M together
with a maximal mwb atlas on M . Generally we simply call M a manifold-with-
boundary, with the understanding that there is a maximal mwb atlas in the
background that we don’t wish to incorporate into the notation.

Henceforth, for a given manifold-with-boundary, we will simply call a mwb chart
a chart.

We define “smooth map” from a manifold-with-boundary M to a manifold (or
manifold-with-boundary) N just as we did for maps from a manifold M to a manifold
N : we require the chart-representatives to be smooth maps from open subsets of
R

dim(M)
+ to Rdim(N).

Definition 1.3 Let M be an n-dimensional manifold-with-boundary. We call p ∈M
a boundary point of M if, within the given maximal mwb atlas, there is a chart (U, φ)
for which φ(p) ∈ ∂Rn

+ = Rn−1 × {0}. The boundary of M (in the sense of “manifolds
with boundary”) is the set of boundary points of M , and is denoted ∂M .

Note that a manifold-with-boundary M is a (true) manifold iff ∂M = ∅.

Remark 1.4 In the topological sense of boundary (a notion defined for subsets of a
given topological space), the boundary of every topological space is empty. The nota-
tion “∂M” for manifolds-with-boundary does not represent the topological boundary
of M , unless (perhaps) M comes to us as a subset of some larger topological space. An
example of the latter type is Rn

+ itself, which has a one-chart mwb atlas. The set ∂Rn
+

that we defined earlier is simultaneously the boundary of the manifold-with-boundary
Rn

+, and the boundary of Rn
+ as a subset of Rn.

(a) Suppose p ∈ ∂M , and let (U, φ) be a chart of M for which p ∈ U and
φ(p) ∈ ∂Rn

+. Let (V, ψ) be another chart of M for which p ∈ V . Show that ψ(p) ∈
∂Rn

+ as well.
Thus, for any point p in M , either φ(p) ∈ ∂Rn

+ for every chart (U, φ) with p ∈ U ,
or for no chart (U, φ) with p ∈ U .

(There are essentially two ways to do this problem-part. One does not involve differen-

tiability of overlap-maps at all; it simply uses the fact that they are homeomorphisms and

applies a fact called invariance of domain, a nontrivial result you may have learned in a

topology class. The other approach relies on the fact that our overlap-maps are assumed

smooth (C1 would be enough) and applies the Inverse Function Theorem.)

(b) Show that, if ∂M 6= ∅, then an n-dimensional mwb atlas on M determines,
canonically, an (n− 1)-dimensional manifold atlas on M .

(c) Let M be a manifold and let D ⊂M be a closed domain with regular boundary.
Show that D naturally inherits the structure of a manifold-with-boundary whose
boundary ∂D coincides with the topological boundary of D as a subset of M .

11


