
Differential Geometry—MTG 6257—Spring 2022
Problem Set 3

Due-date: Monday, Apr. 4

Required reading: problems 1–5 (including any extra reading that a problem’s
instructions say to do), plus the posted notes “F -linearity, tensoriality, and related
notions.” Some problems introduce terminology and ideas you’ll need in later prob-
lems.

Required problems (to be handed in): 3b, 4b, 5b, 8d(i). In doing any of these
problems, you may assume the results of all earlier problems (optional or required).
You may also use results from notes I’ve posted for this class (in particular, the notes
mentioned above and the notes on tensor products), unless what I’m asking you to
prove is one of those results whose proof was left as an exercise.

Optional problems: All the ones that are not required.

1. Read the subsection “Exterior powers
∧k(V ) and their universal property” in the

posted notes on tensor products (Section 4.3, as of the time of this writing, but that could

change), and do the last exercise in that section (showing, a finite-dimensional vector
space V , that

∧k(V ∗) (defined using the notes’ definition of
∧k(any vector space))

is canonically isomorphic to
(∧k(V )

)∗
and to the space of alternating functions

V × · · · × V︸ ︷︷ ︸
k copies

→ R. If you need to trace back through the notes for earlier defini-

tions or results, do so.

2. Let V be an n-dimensional vector space, 0 < n <∞, let {θi}ni=1 be a basis of V ∗,
and let k ∈ {1, 2, . . . , n}. Show that{

θi1 ∧ θi2 ∧ · · · ∧ θik
}
1≤i1<i2<···<ik≤n

is a basis of
∧k(V ∗), by (at least) one of the following two methods:

(i) Take the first definition of
∧k(V ∗) as the space of multilinear, alternating func-

tions V × · · · × V︸ ︷︷ ︸
k copies

→ R, and fill in the details of the proof that was sketched in

class a long time ago; or

(ii) Proceed directly from the definition of
∧k(any vector space) in the posted notes

on tensor product.

3. Induced connections on dual bundles. Let ∇ be a connection on a vector
bundle E over a manifold M .
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(a) In class we sketched a proof of the following result: there is a unique connection
∇′ on the dual bundle E∗ such that

X(〈ξ, s〉) = 〈∇′Xξ, s〉+ 〈ξ,∇Xs〉 (1.1)

for all vector fields X and all sections ξ, s of E,E∗ respectively. (In (1.1), the dual-
pairings are taken pointwise, of course.) Fill in the details of this sketch.

(b) Let {sα}kα=1 be a local basis of sections of E and let {ξα} be the local basis of
sections of E∗ dual to {sα}. Let Θ,Θ′ ∈ Ω1(U ;Mk×k(R)) be the connection forms of
∇,∇′ with respect to these local bases. (Here and in later problems, Mk×k(R) denotes

the space of k×k real matrices.) Since we are using upper indices for the basis sections
of E∗, we write the first index of Θ′ downstairs and the second index upstairs1:

∇′ξβ = ξα ⊗ (Θ′)α
β

Show that Θ′ is the negative transpose of Θ, in the sense that (Θ′)α
β = −Θβ

α.

(c) Show that for all p ∈ M and X, Y ∈ TpM , the endomorphism F∇
′
(X, Y ) :

E∗p → E∗p is the negative of the natural adjoint of F∇(X, Y ) : Ep → Ep. (For the

definition of “natural adjoint”, see the Appendix in the posted tensor-product notes.)

4. Induced connections on direct sums, tensor products, and homomor-
phism bundles. Let ∇(1),∇(2) be connections on vector bundles E1, E2 over a
manifold M . Let U ⊂ M be an open set over which both E1 and E2 are trivial, let
s := {sα}k1α=1, t := {tµ}k2µ=1 be bases of sections of E1, E2 (respectively) over U , and let

Θ(1) ∈ Ω1(U ;Mk1×k1(R)),Θ(2) ∈ Ω1(U ;Mk2×k2(R)) be the corresponding connection
forms. (Your answer should be expressed in terms of Θ(1) and Θ(2).)

(a) The direct sum connection ∇ on E1⊕E2 is defined by ∇
(
s
t

)
=

(
∇(1)s
∇(2)t

)
,

i.e. ∇X

(
s
t

)
=

(
∇(1)
X s

∇(2)
X t

)
, where s ∈ Γ(E1), t ∈ Γ(E2), and X ∈ Γ(TM). (It is

easy to check that this does define a connection.) Find the connection form of ∇ with

respect to the basis

(
s1
0

)
, . . . ,

(
sk1
0

)
,

(
0
t1

)
, . . . ,

(
0
tk2

)
.

(b) (i) Show that there is a unique connection ∇ on E1 ⊗ E2 such that

∇X(s⊗ t) = (∇(1)
X s)⊗ t+ s⊗∇(2)

X t (1.2)

for all s ∈ Γ(E1), t ∈ Γ(E2), and X ∈ Γ(TM). Note that this cannot be deduced from
applying the universal property of tensor products to Γ(E1) ⊗ Γ(E2), since “s ⊗ t”

1By default, LaTeX stacks superscripts directly on top of subscripts, as in Bk
j , making it impossi-

ble to distinguish which is the first index and which is the second. One way to produce, say, Bi
j , is

$ { Bˆi} j $.
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denotes the pointwise tensor product p 7→ s(p) ⊗ t(p). If we attempt to take (1.2)
as a definition of ∇, it is not obvious without a little computation that ∇X(s ⊗ t)
is well-defined, not just because elements of the form sp ⊗ tp don’t form a basis of
the vector space E1,p ⊗ E2,p, but because s ⊗ t = fs ⊗ (1/f)t for any nonvanishing
f ∈ C∞(M).

We call ∇ the tensor product connection determined by ∇(1) and ∇(2).

(ii) Find the connection form of ∇ with respect to the local basis of sections
{sα⊗tµ} of E1⊗E2, expressed in terms of Θ(1) and Θ(2). To write this down efficiently,
it’s helpful to have an object you can call the “tensor product of two matrices”. This
object is defined in the handout “Some notes on tensor products”; see the Remark
in these notes entitled “ ‘tensor product’ of two matrices”. (As of this writing, this

Remark resides in Section 2.5, “The finite-dimensional case”’, as Remark 2.29. Numbering

in these notes is subject to change, since the notes are still a work in progress.) The
precise definition is really not important for this exercise; all that really matters is
that there is a definition that’s consistent with standard conventions of linear algebra.

(iii) Show that the curvature F∇ satisfies

F∇(X, Y )(s⊗ t) = (F∇
(1)

(X, Y )s)⊗ t+ s⊗ (F∇
(2)

(X, Y )t) (1.3)

for all s ∈ Γ(E1), t ∈ Γ(E2), and X, Y ∈ Γ(TM). We may write (1.3) symbolically as

F∇ = F∇
(1) ⊗ idE2 + idE1 ⊗ F∇

(2)

.

(c) Combining problems 4b and 3, there is an induced connection∇ on E2⊗E∗1
∼=

can.

Hom(E1, E2). Show that this connection satisfies

(∇XA)(s) = ∇(2)
X (A(s))− A(∇(1)

X (s))

for all A ∈ Γ(Hom(E1, E2)), s ∈ Γ(E1), and X ∈ Γ(TM). Note that this can be
written as the Leibnizian-looking formula

∇(2)
X (A(s)) = (∇XA)(s) + A(∇(1)

X (s)).

(d) Show that the induced connection ∇ on End(E1)
∼=

can. E1 ⊗ E∗1 satisfies

F∇(X, Y )A = [F∇
(1)

(X, Y ), A] := F∇
(1)

(X, Y ) ◦ A− A ◦ F∇(1)

(X, Y )

for all A ∈ Γ(End(E1)) and X, Y ∈ Γ(TM).

(e) Let RM denote the product bundle M × R → M , and let ∇(0) denote the
canonical connection on RM . (Recall from class that ∇(0)f = df .) The bundles
RM ⊗ E1 and E1⊗ are canonically isomorphic to E1. Show that these canonical
isomorphisms carry the tensor-product connections on RM⊗E1 and E1⊗RM , induced
by ∇(0) and ∇(1), to the connection ∇(1).
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Remark 1.1 The construction of direct-sum connections and tensor-product con-
nections extends in an obvious way to direct sums and tensor products of more than
two vector bundles. In particular, a connection on a vector bundle E induces a con-
nection on any bundle of the form E1⊗ . . .⊗Ek (k ≥ 1) where for each i, the bundle
Ei is either E or E∗. It is too cumbersome to have distinct notation for each of these
induced connections (as we did in problems 1 and 2). Hence, if ∇ is a connection on
E, we generally use the same notation ∇ for the induced connection on any of these
bundles. In any term in a formula or equation, context—the type of section being
differentiated—makes clear which connection is being used.

Remark 1.2 (A convention used below) A tensor bundle over a manifold M is
any bundle of the form E1⊗ . . .⊗Ek (k ≥ 1), where for each i, the bundle Ei is either
TM or T ∗M ; if k = 1 we also allow the trivial product bundle RM = M ×R → M
[which was denoted E(0) in class]. (Because of the canonical isomorphisms mentioned
in problem 4(e), we gain no new bundles by allowing Ei = RM if k > 1, but there
is no harm in allowing it.) A connection ∇ on TM then induces a connection (also
denoted ∇) on every tensor bundle over M , provided we define which connection to
use on the trivial bundle RM . In view of problem 2(e), in the context of induced
connections on tensor bundles, we define the “induced” connection ∇ on RM to be
the canonical connection on this product bundle (no matter what connection is used
on TM).

With this convention, given a connection ∇ on TM , the collection of induced
connections on tensor bundles is “Leibnizian with respect to contractions” in the
sense that (1.1) holds with a single symbol “∇”, and “Leibnizian with respect to
tensor products” in the sense that (1.2) holds with a single symbol “∇”.

Remark 1.3 We also sometimes refer to sub-bundles and direct sums of tensor
bundles as tensor bundles, but do not make that generalization in this homework
assignment.

5. Let ∇ be a connection on a vector bundle E over a manifold M . By problems 3
and 4, ∇ induces a connection on E∗ ⊗ E∗.

(a) Show that the induced connection ∇ on E∗ ⊗ E∗ preserves the sub-bundles
Sym2(E∗) and

∧2(E∗) in the following sense: if s is a section of either of these sub-
bundles, and X is a vector field on M , then ∇

X
s is a section of the same sub-bundle.

Thus, the restriction of ∇ to sections of either of these sub-bundles is a connection
on that sub-bundle.

(b) Let g be a Riemannian metric (in the vector-bundle sense) on E, and let g ∈
Γ(Hom(E,E∗)) be the section whose value at p ∈M is the isomorphism gp : Ep → E∗p
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determined by the metric g. Show that if g is covariantly constant, then so is g:

∇X(g(s)) = g(∇Xs) for all s ∈ Γ(E), X ∈ Γ(TM).

6. The covariant Hessian. Let ∇E be a connection on a vector bundle E over M ,
and let ∇M be a connection on TM . For all vector fields X, Y and all s ∈ Γ(E), let

(H̃s)(X, Y ) = ∇E
X∇E

Y s−∇E
∇M

X Y s.

(In case the last term of the formula is hard to read: in that term, “∇M
X Y ” is a

subscript to ∇E; at each p ∈ M we are differentiating s in the direction ∇M
X Y
∣∣
p
,

using the connection ∇E.

(a) Show that (H̃s)(X, Y ) is F -bilinear in (X, Y ). Hence, for each s, the map

(X, Y ) 7→ (H̃s)(X, Y ) is tensorial, and therefore defines a section Hs of
E ⊗ T ∗M ⊗ T ∗M .

The section Hs is called the covariant Hessian of s with respect to the connections
∇E and ∇M . If (M, g) is Riemannian, and you see the term “covariant Hessian” used
without the connections ∇E and ∇M having both been specified explicitly, the writer
is probably using the following conventions:

• ∇M is the Levi-Civita connection on (M, g).

• If E is a tensor bundle over M , then ∇E is the one induced by the Levi-Civita
connection. Note that for the product bundle RM , this means that the canonical
connection (∇f = df) is used, so the covariant Hessian of f ∈ C∞(M) is given
by Hf(X, Y ) = X(Y (f))− (∇XY )(f), where ∇ is the Levi-Civita connection.

(b) Show that if ∇M is torsion-free, then for all sections s and vector fields X, Y ,

Hs(X, Y )−Hs(Y,X) = F∇
E

(X, Y )s.

Thus, the left-hand side is tensorial in s, even though neither term individually is
tensorial in s.

(c) Following the conventions mentioned above, show that on a Riemannian man-
ifold, the covariant Hessian of any function f ∈ C∞(M) is a symmetric tensor field.
(All that is needed for this symmetry is that we use a torsion-free connection on TM ;
the metric does not enter the argument.)

7. Higher-order covariant derivatives. Let ∇ be a connection on TM . Using
the convention in Remark 1.2, we have an induced connection denoted ∇ on every
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tensor bundle over M . Since a connection on any vector bundle E maps Γ(E) to
Γ(E ⊗ T ∗M), we therefore have an infinite sequence of maps

C∞(M) = Γ(RM)
∇=d−→ Γ(T ∗M)

∇−→ Γ(T ∗M⊗T ∗M)
∇−→ Γ(T ∗M⊗T ∗M⊗T ∗M)

∇−→ . . . .
(1.4)

(For any tensor bundle E we have a similar sequence, with Γ(RM) replaced by Γ(E),
and with (T ∗M)⊗k replaced by E ⊗ (T ∗M)⊗k.) In particular, for f ∈ C∞(M), a
connection on TM allows us to define ∇∇f,∇∇∇f, etc.

(a) Show that if the connection ∇ is torsion-free, then ∇∇f is the covariant
Hessian defined in problem 3.

If you do part (a) carefully, you will likely find that you are actually doing part
(b), and then deducing part (a) using problem 5b. I’ve stated part (a) separately
since it’s more forgiving of an easily-made mistake.

(b) More generally, show that if the connection ∇ is arbitrary, then ∇∇f is still
the covariant Hessian up to a “transpose”:

(∇∇f)(X, Y ) = Hf(Y,X). (1.5)

(This is true with f replaced by a section of any tensor bundle; I’m just giving you
the simplest case for homework. An analog is also true for sections of an arbitrary
vector bundle E, except that we need to specify two initial connections, ∇E and ∇M ,
to define what “∇” is going to mean beyond the first map in the sequence analogous
to (1.4).)

8. Covariant exterior derivative. Let E be a vector bundle over a manifold M . As
in class, we will use the abbreviated notation “Ωj(E)” for Ωj(M ;E) = Γ(E⊗

∧jT ∗M).

(a) Let j, l ≥ 0.

(i) Show that there is a unique bilinear map ∧ : Ωj(E) × Ωl(M) → Ωj+l(E),
(α, ω) 7→ α ∧ ω, satisfying

(s⊗ η)p ∧ ωp = sp ⊗ (η ∧ ω)p for all p ∈M. (1.6)

(ii) Show that there is a unique bilinear map Ωj(End(E)) × Ωl(E) → Ωj+l(E)
satisfying

((A⊗ η)p, (s⊗ ω)p) 7→ Ap(sp)⊗ (ηp ∧ ωp) for all p ∈M. (1.7)

(In this equation, the endomorphism Ap is applied to the vector sp ∈ Ep, while
the

∧∗T ∗pM -factors are wedged together.) Henceforth we omit the subscript p
equations like (1.6) and (1.7), understanding that an equation like “(s⊗η)∧ω =
s⊗ (η ∧ ω)” is to be interpreted as a pointwise statement.
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For F ∈ Ωj(End(E)) and ξ ∈ Ωl(E), we will write F (ξ) for the image of
(F, ξ) under the map defined pointwise by (1.7). Regrettably, the notation is
not self-explanatory, but I know of no wonderful notation for this combined
endomorphism-evaluation/wedge-product operation.

(b) Let ∇ be a connection on E. Show that there is a unique linear map d∇ :
Ω∗(E)→ Ω∗(E) that satisfies

d∇(s⊗ ω) = (∇s) ∧ ω + s⊗ dω (1.8)

for all s ∈ Γ(E), ω ∈ Ωj(M), j ≥ 0. We call d∇ the covariant exterior derivative
operator determined by ∇.

(c) Notation as in (b). Show that, for j ≥ 0, the operator d∇ : Ωj(E)→ Ωj+1(E)
is not F -linear, but that d∇ ◦ d∇ : Ωj(E)→ Ωj+2(E) is F -linear.

(d) Let F∇ ∈ Ω2(End(E)) be the curvature 2-form of ∇.

(i) Show that for every s ∈ Γ(E), d∇d∇s = F∇(s), where the notation is as in
(a)(ii) above (with j = 0).

(ii) Show, more generally, that for any j ≥ 0 and ξ ∈ Ωj(E), d∇d∇ξ = F∇(ξ).

Remark 1.4 Hence for a flat connection, the pair (Ω∗(E), d∇) is a cochain complex,
and cohomology is defined. Remember, however, that not every vector bundle admits
a flat connection. For those that do, the cohomology groups (in a given degree) defined
by different flat connections may not be isomorphic.

9. Torsion and the covariant exterior derivative. Let M be a manifold. The
identity map I : TM → TM may be viewed as a TM -valued 1-form on M . (Note
that for a general vector bundle, there is no analog of this special 1-form.)

Let ∇ be a connection on TM .

(a) Show that
d∇I = τ∇, (1.9)

where the torsion tensor-field τ∇ is viewed as a TM -valued 2-form (just as is d∇I).
I.e. the torsion of a connection on TM is the covariant exterior derivative of the
“identity 1-form” I ∈ Ω1(M ;TM).

Remark 1.5 Above, we treated I as an element of Ω1(M ;TM); the object d∇I was
then an element of Ω2(M ;TM). But we may also view I as tensor field onM , a section
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of the bundle End(TM) = End(TM ⊗ T ∗M). (In terms of bundle-valued differential
forms, I is then a element of Ω0(M ; End(TM)) rather than Ω1(M ;TM).) From an
earlier problem on this assigment, the connection ∇ on TM induces a connection on
End(TM). With this induced connection, treating I as a section of End(TM), we
have ∇I = 0 ∈ Γ(End(TM)⊗ T ∗M) = Ω1(M ; End(TM)).

(b) Suppose τ∇ = 0. Then, viewing I as a TM -valued 1-form, by part (a) we
have d∇d∇I = d∇(0) = 0 ∈ Ω3(M ;TM). But by problem 8d(ii), we also have
d∇d∇I = F∇(I) ∈ Ω3(M ;TM). Hence F∇(I) = 0.

In particular “F∇(I) = 0” holds if ∇ is the Levi-Civita connection for a Rieman-
nian metric g. Use the definition of F∇(I) (plus the equation F∇(I) = 0) to derive a
symmetry of the Riemann tensor that we have derived by other means.
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