
Differential Geometry—MTG 6257—Spring 2022
Problem Set 4

Due-date: Wednesday, 4/27/22

Homework should either be given to me in person, or slipped under my
door, or placed in the basket that’s on my door. Your homework is not to
be submitted electronically unless I have given you individual permission
for that. (That permission has been given to only one student, and I do not expect
to give it to any others. Please remember that my extension of the hand-in date from
Apr. 20, the original date, to Apr. 27, is an accommodation to students. In return,
I expect that you not make extra work for me, which is what electronic submission
would do.)

Required problems (to be handed in): 1bc, 2bce, 3b, 6ace. In doing any of
these problem parts, you may assume the results of all earlier problems and problem-
parts (optional or required).

Optional problems: All the ones that are not required.

Required reading: All parts of problems 1–3, and the reading mentioned in the
directions for problem 6.

Notation for all the problems: unless otherwise specified, M is an n-dimensional
manifold. (Some problems may still state this explicitly.)

1. Levi-Civita connection on a submanifold. Let M be an n-dimensional man-
ifold, N a submanifold, and j : N → M the inclusion map. For any subset W ⊂ M
and any Y ∈ Γ(TM |W ) (a vector field along W ), we call Y tangent to N if Yp ∈ TpN
for all p ∈ N ∩W . (Here and below, we identify TpN with its image in TpM under
the inclusion map j∗p. Thus a vector field on N—a section of TN—is identified with
a vector field along N that is tangent to N .)

(a) Let p ∈ N, let Ũ ⊂ M be an M -open neighborhood of p that is the domain

of an N -adapted chart, let U = N ∩ Ũ , and let Y be a vector field along U (thus
Y ∈ Γ(TM |U), but Y is not necessarily tangent to N). It is easily seen from the

definition of “adapted chart” that the N -open set N ∩ Ũ is closed as subset of the
manifold Ũ . Hence, problem 1(b) on this semester’s Problem Set 1 shows that Y

can be extended to a vector field Ỹ on Ũ . We refer to such a vector field Ỹ on the
M -open set Ũ as a local extension of Y to M .

Given vector fields X, Y on N , their Lie bracket (commutator) is another vector
field on N . Show that “local extensions of vector fields on submanifolds behave well
with respect to commutator,” in the sense that if X̃, Ỹ are local extensions of X, Y to
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M , both defined on an M -open set Ũ , then [X̃, Ỹ ] ∈ Γ(TM |Ũ) is is a local extension

of [X, Y ]. (Hence, in particular, [X̃, Ỹ ] is tangent to N .)

For the remaining parts of this problem, let g be a Riemannian metric on N .

(b) Let πtan : TM |N → TN denote orthogonal projection (i.e. at each p ∈ N ,
πtan is the gp-orthogonal projection TpM → TpN). Let p ∈ N . Let ∇ be any
connection on TM , and let X, Y be vector fields on N . For any local extensions X̃, Ỹ
of X, Y to M , both defined on an M -open set Ũ , and any p ∈ N ∩ Ũ , define

(∇′
X̃
Ỹ )p = πtan

(
(∇X̃ Ỹ )p

)
.

Prove that (∇′
X̃
Ỹ )p is independent of the choices of extensions X̃, Ỹ of X, Y .

(c) In view of part (b), given ∇ as above we can unambiguously define an operator
∇ : Γ(TN)× Γ(TN)→ Γ(TN) by

∇XY = πtan
(
∇X̃ Ỹ

)
, (1.1)

where X̃, Ỹ are arbitrary (smooth) local extensions of X, Y to N , since at each p ∈ N
the right-hand side of (1.1) is independent of the choices of extensions. Prove that ∇
is a connection on TN .

(d) Prove that if the connection ∇ in (d) is the Levi-Civita connection ∇M of
(M, g), then the connection ∇ preserves j∗g and is torsion-free, hence is the Levi-
Civita ∇N connection of (N, j∗g). Thus we have the following fact, which simplifies
many computations:

∇N
XY = πtan

(
∇M
X̃
Ỹ
)
, (1.2)

where X̃, Ỹ are arbitrary local extensions of X, Y .

(Note: The Levi-Civita connection of a Riemannian manifold, e.g. (M, g) depends

on the metric g, not just on the manifold M . In our notation “∇M” and “∇N” we are

suppressing the metric-dependence just to avoid unwieldy notation.)

2. Second fundamental form. Let (M, g) be a Riemannian manifold and N
a submanifold. We equip N with the induced metric j∗g, where j : N ↪→ M is
the inclusion map. For each p ∈ N, let (TpN)⊥ ⊂ TpM denote the gp-orthogonal
complement of TpN . It can be shown that

(TN)⊥ :=
∐

p∈N(TpN)⊥ ⊂ TM |N

2



satisfies the definition of “vector sub-bundle of TM |N” (hence is a vector bundle in
its own right). We call (TN)⊥ the geometric normal bundle of N .

Let ∇M ,∇N denote the Levi-Civita connections of (M, g) and (N, j∗g) respec-
tively, and let πnor : TM |N → (TN)⊥ denote the vector-bundle homomorphism that,
at each p ∈ N , is the gp-orthogonal projection TpM → (TpN)⊥). (Recall that we

previously defined the algebraic normal bundle of N to be the vector bundle whose fiber at

p is the quotient space TpM/TpN , rather than any subspace of TpM . The algebraic normal

bundle is defined without any reliance on a Riemannian metric. Note that a quotient space

is not a subspace; the algebraic normal bundle of N is a quotient bundle of TM |N , not

a sub-bundle of TM |N . However, it is not hard to show that the bundle homomorphism

πnor : TM |N → (TN)⊥ descends to a bundle isomorphism from the algebraic normal bun-

dle to the geometric normal bundle. Hence the geometric normal bundle, whose underlying

point-set depends on a metric, is isomorphic to the algebraic normal bundle, whose under-

lying point-set does not.)

(a) Let p ∈ N , Y ∈ TpN . Show that there exists an extension of Y to a vector
field Ỹ on an M -open neighborhood Ũ of p, with Ỹ tangent to N .

(b) Let p ∈ N , X, Y ∈ TpN . Let Ỹ be any local extension of Y to M that is
tangent to N . (Part (a) says that such an extension exists.) Show that the vector
πnor(∇M

X Ỹ ) ∈ (TpN)⊥ is independent of the choice of extension Ỹ .

(c) In view of part (b), we can unambiguously define a section h of
Hom(TN ⊗ TN, (TN)⊥) ∼=

canon.
T ∗N ⊗ T ∗N ⊗ (TN)⊥ by

h(X, Y ) = πnor(∇M
X Ỹ ), (1.3)

where Ỹ is any extension of Y to M that is tangent to N . Show that h is symmetric:
h(X, Y ) = h(Y,X). (Hence h is actually a section of the sub-bundle Sym2(T ∗N) ⊗
(TN)⊥.)

Remark. Comparing (1.2) and (1.3), we see that for all vector fields X̃, Ỹ on M
that are tangent to N , at each point of N we have

∇M
X̃
Ỹ = ∇N

XY + h(X, Y ), (1.4)

where X = X̃|N and Y = Ỹ |N . The first term on the right-hand side is tangent to N
and is Leibnizian in Y ; the second term is normal to N and is F -linear in Y .

(d) Suppose N has codimension 1. Then, locally, there exist two unit normal
vector fields (each the negative of the other). Let ν be one of these unit normal
vector fields, say on an open connected set U ⊂ N . Since (TpN)⊥ is 1-dimensional
for each p ∈ N , we have
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h(X, Y ) = g(h(X, Y ), ν)ν (1.5)

The (scalar-valued) second fundamental form1 determined by ν is the tensor field
h ∈ Γ((T ∗N ⊗ T ∗N)|U) given by the coefficient of ν on the right-hand side of (1.5):

h(X, Y ) = g(h(X, Y ), ν)

= g(∇M
X Ỹ , ν)

for any extension of Y tangent to N .

Let ν̃ be any local extension of ν to M . Show that for all X, Y ∈ Γ(TN |U),

h(X, Y ) = −g(∇M
X ν̃, Y ). (1.6)

Thus the second fundamental form h measures the bending of the unit normal.

Remark. If N is connected and admits a nonvanishing normal vector field, then
there are exactly two globally-defined scalar-valued second fundamental forms, each
the negative of the other. The tensor field h ∈ Γ(Sym2(T ∗N) ⊗ (TN)⊥) can be
called the vector-valued second fundamental form. Unlike the scalar-valued second
fundamental forms, h is always well-defined globally (and is unique), whether or not
N admits a global nonvanishing normal vector field.

In the literature, you will see both h and h referred to as “the second fundamental
form”; you have to tell from context whether the author means the scalar-valued or
vector-valued object. (If you are lucky, the author will tell you explicitly.)

(e) Let M = Rn with the standard metric, and let N = Sn−1 with the induced
metric. Let ν be the outward-pointing normal vector field. Show that the second
fundamental form h determined by ν is given by

h(X, Y ) = −g(X, Y ) for all p ∈ Sn−1 and X, Y ∈ TpSn−1 .

(f) Let M = R3 with coordinates (x, y, z) and the usual metric, let U ⊂ R2 be
an open neighborhood of (0, 0), let f : U → R, and let N ⊂ R3 be the graph of f .
Assume that f(0, 0) = 0 and that df |(0,0) = 0, so that the plane in R3 tangent to N
at (0, 0, 0) (the “embedded tangent space” at the origin) is the xy plane. Let ν be
the upward-pointing normal vector field (i.e. the one whose z-component is positive).
Let h be the second fundamental form determined by ν.

1Historically, the first fundamental form was the induced metric j∗g. Nowadays, the terminology
“first fundamental form” has largely been supplanted by the more self-descriptive “induced metric”,
but the terminology “second fundamental form” has survived unscathed.
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The Taylor expansion of f near (0, 0) is of the form f(x, y) = 1
2
(ax2+2bxy+cy2)+

(higher-order remainder). Express h at the origin in terms of a, b, and c.

Figure out how this generalizes to graphs of functions f : (U ⊂ Rn)→ R.

Remark. For any hypersurface (:= codimension-one submanifold) N ⊂ Rn, and
any p ∈ N , we can rotate and translate the coordinate axes in Rn to make p the
origin and TpN the hyperplane H = {xn = 0}. The Implicit Function Theorem then
implies that, near the origin, N is the graph of a function f : (U ⊂ H) → R. So,
your work above provides a general interpretation of the second fundamental form
of a hypersurface in Rn: it describes the second-order deviation of the surface from
its tangent plane at any point. (There is no first-order deviation; that’s what “tangent

plane” means.) For these reasons, the second fundamental form of a submanifold of
Rn is often called the “extrinsic curvature” of the submanifold; it’s something that
an observer in Rn, external to the submanifold, might describe as “curvature.” The
Riemann tensor of a submanifold of Rn is thought of as “intrinsic curvature”: once
one has the metric on N , nothing involving the ambient manifold is needed to define
or compute the Riemann tensor.

3. Gauss equations in codimension 1. (a) Let (M, gM) be Riemannian manifold
and let N ⊂ M be a codimension-1 submanifold. Give N the induced metric, which
we denote gN . Let p ∈ N , let U be a small neighborhood of p in N , let ν be one of
the two unit normal vector fields defined on U , and let h be the scalar-valued second
fundamental form determined by ν. Thus if X, Y ∈ Γ(TN |U) and X̃, Ỹ are extensions
of X, Y to a neighborhood of U in M , then

∇N
XY = ∇M

X̃
Ỹ − h(X, Y )ν.

Use this to establish the Gauss equations, initially just at the point p:

gN(RiemN(X, Y )Z,W ) = gM(RiemM(X, Y )Z,W )

+h(X,W )h(Y, Z)− h(X,Z)h(Y,W ) (1.7)

for all X, Y, Z,W ∈ TpN . (Note since RiemN(X, Y )Z ∈ TpN and W ∈ TpN , the
left-hand side of (1.7) would have the same value if we replaced “gN” by “gM”; above
we are choosing to write the left-hand side purely in terms of objects defined on N .)
Observe that replacing ν by −ν has the effect of turning h into −h, and therefore
has no effect on the right-hand side of (1.7). Thus (1.7) is true globally, where, at
any point p, we allow h to be either of the two locally-defined scalar-valued second
fundamental forms.

Remark: If (M, gM) is (Rn, gEuc) then RiemM ≡ 0, so in this case equation (1.7)
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expresses RiemN purely in terms of the second fundamental form.

Remark: Equation (1.7) can also be written using the (unique) vector-valued
second fundamental form h:

gN(RiemN(X, Y )Z,W ) = gM(RiemM(X, Y )Z,W )

+gM(h(X,W ),h(Y, Z))− gM(h(X,Z),h(Y,W )).

(1.8)

Equation (1.8) remains true if we allow N to have arbitrary codimension, but I am
not asking you to prove that. (It’s not difficult; I’d just rather you directed your time
to other problems.)

(b) Let N = Sn ⊂ M = Rn+1 (for this problem-part, dim(M) 6= n). Write “g”
for “gN”, and “Riem” for “RiemN”. Similarly, “Ric” and “R” below are the Ricci
tensor and scalar curvature of (Sn, g). Using this and (1.7), find simple formulas for

• g(Riem(X, Y )Z,W ) for any vectors X, Y, Z,W are tangent to Sn at the same
point;

• all sectional curvatures of (Sn, g) (I have already told you the answer in class,
and given you another way to do the computation; you’ll just be verifying that
tha answer I gave you was correct).

4. Lemma for use in later problem(s). Let {yi} be standard coordinates on Rn,
let ω ∈ Ωn−1(Sn−1) be the standard volume form, and let Vol(Sn−1) =

∫
Sn−1 ω (the

volume of the standard, Euclidean, unit sphere). Show that for all i, j ∈ {1, . . . , n},∫
Sn−1

yiyj ω =
1

n
δij Vol(Sn−1).

(This can be done without any trigonometric integrals.)

Note: Vol(Sn−1) can be computed explicitly. I simply am not asking you to do
the computation. (However, it can be reduced to a trigonometric integral of the type
we teach “reduction formulas” for in Calc 1.)

5. Ricci tensor and scalar curvature. Let (M, g) be a Riemannian manifold. For
each p ∈M and X, Y ∈ TpM , the Riemann tensor defines a linear map TpM → TpM
by Z 7→ R(X,Z)Y . Define
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Ric(X, Y ) = Ric|p(X, Y ) = tr(Z 7→ R(X,Z)Y ),

where “tr” denotes the trace. Thus, if {ei} is an arbitrary basis of TpM and {θi} is
the dual basis of T ∗pM ,

Ric(X, Y ) = 〈θi, R(X, ei)Y 〉.

Clearly the map (X, Y ) 7→ Ric|p(X, Y ) is bilinear, so Ric|p is an element of
T ∗pM ⊗ T ∗pM . This bilinear form is called the Ricci tensor at p. Letting p vary,
it is easily seen that Ric|p depends smoothly on p, so Ric becomes a tensor field on
M , called the Ricci tensor (field) or the Ricci curvature.

(a) Show that with p, {ei}, {θi} as above, the Ricci tensor at p is given by

Ric = Rjl θ
j ⊗ θl,

where Rjl = Ri
jil

and where {Ri
jkl} are the components of the Riemann tensor at p with respect to the

given bases.

(b) Show that the Ricci tensor is a symmetric tensor field: for all p ∈ M and all
X, Y ∈ TpM , we have Ric(X, Y ) = Ric(Y,X).

Suggestion: Compute the trace defining Ric(X, Y ) using an orthonormal basis of
TpM . The dual pairing with θi then becomes inner product with ei.

(c) Below, for any normed vector space V , we write S(V ) for the unit sphere centered
at the origin.

Assume that n = dim(M) ≥ 2. Recall that, at each p, the sectional curvature
of M at p is a map G2(TpM) → R, P 7→ σ(P). For X ∈ S(TpM) let X⊥ =
{Y ∈ TpM : Y ⊥ X}. Let GX

2 (TpM) ⊂ G2(TpM) denote the set of all 2-planes in
TpM that contain X. There is a two-to-one map

πX : S(X⊥) → GX
2 (TpM),

πX(Y ) = P(X, Y ) := span{X, Y }.

(The “two-to-one” comes from the fact that πX(−Y ) = πX(Y ).) The vector space X⊥ is
a Riemannian manifold with the standard Riemannian metric determined by gp|X⊥ ;
thus S(X⊥) inherits a Riemannian metric. Orienting X⊥ arbitrarily, and giving
Sn−1 the induced orientation, we then obtain a volume form form ωn−2 on S(X⊥).
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(The subscript here is just a reminder of the dimension of S(X⊥).) Show that for
X ∈ S(TpM),

∫
S(X⊥)

(σ ◦ πX) ωn−2 =

∫
S(X⊥)

σ(P(X, ·)) ωn−2 =
Vol(Sn−2)

n− 1
Ric(X,X). (1.9)

Remark 1.1 Hence

1

n− 1
Ric(X,X) =

1

Vol(S(X⊥))

∫
S(X⊥)

(σ ◦ πX) ωn−2 . (1.10)

Thus, up to the normalization constant 1
n−1 , the quantity Ric(X,X) represents the

average sectional curvature among all two-planes in TpM that contain X.2

Remark 1.2 Recall that for any finite-dimensional vector space V , any symmetric
bilinear form h : V × V → R is determined by its restriction to the diagonal: if we
know h(X,X) for all X ∈ V , then we know h(X, Y ) for all X, Y ∈ V . This follows
from the polarization identity

h(X, Y ) =
h(X + Y,X + Y )− h(X − Y,X − Y )

4
.

Furthermore, if V is equipped with a norm ‖ ‖, then for all nonzero X ∈ V we have
h(X,X) = ‖X‖2h(X̂, X̂), where X̂ = X/‖X‖. Thus, in the presence of a norm, a
symmetric bilinear form h can be completely recovered from the function fh (notation
just for this problem) that h determines on the unit sphere:

2The reason we integrated over S(X⊥) in (1.9) and (1.10), rather than over GX
2 (TpM), is that

GX
2 (TpM) is diffeomorphic to the projective space RPn−2, which is not orientable when n is even.

However, whether or not a Riemannian manifold (N, gN ) is orientable, the metric gN induces a well-
defined measure “dµN” on N ; it’s simply something that we did not discuss in the non-orientable case
(it’s not a differential form in that case). Therefore for any finite-dimensional inner-product space W ,
the projectization P(W ) has a Riemannian metric, hence Riemannian measure dµ, induced the by the
natural two-to-one covering map π′ : S(W )→ P(W ) and the standard Riemannian metric on S(W ).
(Here we regard W as a Riemannian manifold with the standard Riemannian metric determined by
the given inner product on W .) Using these facts it can be shown Vol(S(X⊥)) = 2Vol(GX

2 (TpM))
and that ∫

S(X⊥)

(σ ◦ πX) ω =

∫
GX

2 (TpM)

σ dµ.

Thus (1.10) indeed represents the average value of the function σ|GX
2 (TpM) with respect to the induced

measure on GX
2 (TpM).
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fh : S(V ) := {X ∈ V : ‖X‖ = 1} → R,

X 7→ fh(X) := h(X,X).

In particular, for each p ∈ M , the function fRic : S(TpM) ⊂ TpM carries all the
information of the Ricci tensor at p.

(d) Let gp : TpM → T ∗pM be the isomorphism induced by the inner product gp.
For any tensor hp ∈ T ∗pM⊗T ∗pM , we define the trace of hp with respect to gp, denoted
trgp(hp), to be the image of hp under the following composition

T ∗pM ⊗ T ∗pM
gp−1⊗id−→ TpM ⊗ T ∗pM

canon. iso.−→ Hom(TpM,TpM)
trace−→ R.

Applying this pointwise to any h ∈ Γ(Sym2(T ∗M)) gives a real-valued function
trg(h) : M → R.

Show that for h as above, p ∈M , {ei} any basis of TpM ,

trg(h)|p = gijhij = hii = hi
i ,

where hij = h(ei, ej), g· · is the matrix of gp with respect to the basis {ei} (i.e.
gij = g(ei, ej)), and g· · = (g· · )−1.

(e) The scalar curvature or Ricci scalar is the real-valued function R = trg(Ric)
on M . Show that at each p ∈M ,

1

n
R(p) =

1

Vol(Sn−1)

∫
S(TpM)

fRic ωn−1 ,

where fRic is as in Remark 1.2 and ωn−1 is the volume form on the sphere S(TpM)
induced by the metric gp and an arbitrary choice of orientation of TpM .

Thus, up to the normalization constant 1
n
, the scalar curvature at p is the average

value of the function S(TpM) → R, X 7→ Ric(X,X). But for each X ∈ S(TpM),
the quantity fRic(X) is itself an average of sectional curvatures (up to a factor of
1

n−1), so scalar curvature is sometimes thought of as a “double average” of sectional
curvatures. However, the word “double” can be eliminated: it can be shown that, up
to a dimensional constant, R(p) is simply the average value of the sectional-curvature
function σp : G2(TpM)→ R.
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6. Connections on the pulled-back tangent bundle.

Before doing this problem you should read Section 3 of the notes “Pullbacks of
Vector Bundles and Connections”. Sections 1 and 2 of those notes were sketched in
class, but you may find that you need to read portions of these sections in order to
understand Section 3. The notation “F ]” (with “F” called “f”) is defined in Section
2 of these notes.

Let F : N → M be a smooth map of manifolds. As discussed last semester, a
vector field on N does not, in general, push forward to a vector field on M . However, it
does push forward to a section of the pulled-back tangent bundle: Given X ∈ Γ(TN),
we can define a section X̂ ∈ Γ(F ∗TM) by

X̂p := F ]
p(F∗pXp). (1.11)

(a) Let ∇′ be an arbitrary connection on F ∗(TM) (not necessarily pulled back from
a connection on TM). Consider the bilinear, antisymmetric “pseudo-torsion” map
τ̃ψ = τ̃∇

′

ψ : Γ(TN)× Γ(TN)→ Γ(F ∗(TM)) defined by

τ̃ψ(X, Y ) = ∇′X Ŷ −∇′Y X̂ − [̂X, Y ].

(The subscript ψ is for “pseudo”; there is no object “ψ” here.)

Show that τ̃ψ is F(N)-bilinear, hence tensorial, defining a section
τψ = τ∇

′

ψ ∈ Ω2(N ;F ∗(TM)).

(b) We may view (1.11) as the definition of a canonical F ∗(TM)-valued 1-form Iψ on
N ,

Iψ(Xp) = X̂p = F ]
p(F∗pXp).

Show that τψ = d∇′Iψ.

(c) Show that the condition τ∇
′

ψ ≡ 0 is equivalent to the statement that for all local-
coordinate systems {xi} on N ,

∇′ ∂
∂xi

(
∂̂

∂xj

)
= ∇′ ∂

∂xj

(
∂̂

∂xi

)
for all i, j. (1.12)

(d) Show that if ∇′ is the pullback of a connection ∇ on TM whose torsion is τ = τ∇,
then τ∇

′

ψ = F ∗τ , where we define F ∗τ pointwise by

(F ∗p τ)p(Xp, Yp) := F ]
p

(
τF (p)(F∗pXp, F∗pYp)

)
, p ∈ N.
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Hint: Fix an arbitrary point p ∈ N and let {xi}, {yi} be local coordinates on

a neighborhood of p, F (p) respectively. Compute τ̃ψ
(
∂
∂xi
, ∂
∂xj

)
. The Jacobian

(
∂yi

∂xj

)
will enter your calculation.

(e) Use earlier parts of this problem to show that if ∇ is any torsion-free connection
on TM (e.g. the Levi-Civita connection of a Riemannian metric), then (1.12) holds.
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