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1 Homomorphisms of vector bundles over possibly
different manifolds

Let E 5 M and E' ™ N be vector bundles over manifolds M , N respectively. A
vector-bundle homomorphism (also called simply a bundle homomorphism, homomor-
phism, or, more ambiguously, a bundle mapf'_-[) is a smooth map F' : £/ — FE that
carries each fiber of E’ linearly into a fiber of E' (not necessarily injectively or surjec-
tively). Given any such F' and any p € N, the image 7 (F(E,)) is a unique point in M,
so we may define a function f : N — M by f(p) = n(E,), yielding the commutative
diagram in Figure [I

El

Figure 1: Homomorphism of vector bundles. The diagram above commutes. For each
p € N, the map F|E;7 B, — Ejp) is linear.

We say that the bundle map F' : E' — E covers the map f: N — M.

IThe term “bundle map” can be applied to general fiber bundles, not just vector bundles. “Ho-
momorphism” is used only when there is some algebraic structure preserved by a map.



Temporarily letting s : N — E’ denote the zero-section of E’ (i.e. s(p) = Op, for
all p € N), observe that f = mo F o s, a composition of smooth maps. Hence the
map f : N — M covered by the bundle-map F' is itself smooth.

The most common vector-bundle homomorphisms are those of constant rank, i.e.
those for which rank(F'|g, ) is the same for all p € N. Among these, the most impor-
tant are monomorphisms and epimorphisms, those bundle homorphisms F' : £ — E
such that for all p € N, the linear map F| B, E, — Ep() is, respectively, injective or
surjective. Note that in each of these cases, the covered map f need not be injective
or surjective; the injectivity /surjectivity refers purely to the fiberwise behavior of F.

The term isomorphism (of vector bundles) is author-dependent: all authors require
a bundle isomorphism F' to carry fibers isomorphically to fibers, but some authors
(including me) tend not to use the term isomorphism unless, additionally, F' covers
the identity map (i.e. the case in which N = M and f = idy).

2 Pullbacks of vector bundles

Informally, we may think of a rank-k vector bundle over a manifold M as a “smoothly
parametrized” collection of k-dimensional vector spaces {E,}sen; the parameter-
space is M. The definition of wvector bundle gives precise meaning to “smoothly
parametrized”: existence of a vector-bundle atlas for the set £ = [ enE,.

Given manifolds M and N, a rank-k vector bundle £ 5 M, and f : N — M
be a smooth map, the collection of vector spaces {Ef()}pen is again a collection of
k-dimensional vector spaces, but now parametrized by N rather than M. Intuitively,
we ought to be able to think of this collection as being “smoothly parametrized”,
since the map F' is smooth and the set E is a “smoothly parametrized” collection of
vector spaces. In other words, the set

HPGN Ef(p) (2'1)

ought to carry a natural vector-bundle structure (with base-space N), induced by the
smooth map f and the bundle structure of E.

This intuition is correct. The resulting vector bundle over N is called the pullback
of E by f, denoted f*FE.

Remark 2.1 When we write “F = [[,cxE,”, the disjoint-union symbol is just a
reminder that the fibers E, are mutually disjoint; [{,emE, = UpE v Ep- But since
a general map f : N — M need not be one-to-one, the disjoint-union symbol in
“Il jenEf(p)” has a different meaning: rather than asserting that Ey,,) N Efgy) = 0
(a false assertion if there are distinct points pi,ps € N such that f(p;) = f(p2)),
the notation means that for a given ¢ € M, we are associating a separate copy of
E, to each p € f7!(q), and retaining the label p for the copy that arose from p.
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This labeling is equivalent to the statement that, as a set, “II,enEy(,)” limplicitly
means either [ ,en({p} X Ef()), a union of pairwise-disjoint of subsets of N x E,
or H,en(Efp) % {p}), a union of pairwise-disjoint of subsets of £ x N. To do the
concrete constructions of f*E below, we have to choose either the “N x E” meaning
of the labeling or the “E x N” meaning. It is customary to use the “N x E” meaning,
as we do in the constructions below.

The bundle f*FE can be defined in several equivalent ways. More precisely, there
are several constructions of “models” for f*E that are not all identical (e.g. some may
be different as point-sets) but are all canonically isomorphic to each other. Although
the models are equivalent, some directly yield insights into a particular concept that
are less apparent with other models.

We give two closely-related constructions of f*FE (actually the same construction
from two different points of view) below. The first construction is faster, while the
second gives some geometric insight into pulled-back connections, the topic of Section

B3l

Below, we assume we have been given M and N, a rank-k vector bundle £ = M,
and a smooth map f: N — M.

Construction 1 of f*F.

First observe that there is a 1-1 correspondence

Hpen Eppy <— pen ({p} X Eppy) CN X E (2.2)

= {p,v)e NxE: f(p)=n(v)}. (2.3)

We take the RHS of (2.3)) to be the definition of f*E as a set. It is not hard to show
that f*E is a submanifold of N x E, of dimension dim(N) + k.

Let proj; : N x £ — N and proj, : N x E — E denote the projections onto
the first and second factors, respectively, of the Cartesian product. Define maps
7 f*E— Nand f: f*E — E by n’ = proj,|-g and f = proj,

Observe that, for p € N,

(f'E)y, = (=)' (p)
= {ppx{veE: flp)=n()}
= {p} X By,

so f] (f*E), is a bijection (f*E), — Ey(,. The vector-space structure on Ey,), together

[E-

with the bijection f \(p+B), © (f*E)p = Ejfg), canonically induces a vector-space struc-
ture on Eyq,y. The map f|+p, : (f*E), = Ef() then becomes an isomorphism.

Given any vector-bundle atlas V 1= {(Va,%a)}aca for E, let V] = f1(V,), and
for p € V] and v' € (n')7'(p) define ¢, (v') = (P, Ya,r)(f(V))). (Recall that for
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q € V, the map ¥, : B, — R¥ is defined by 1, (v) = (q,%a4(v)).) It is straightforward
to check that V' = {(V,¢/)}aca is a vector-bundle atlas for f*F, and hence that
f*FE is, indeed, a vector bundle over N with projection-map #’. Moreover, the map
f: f*E — E is a bundle homomorphism covering f, and restricts to an isomorphism
(f*E)p, = Eyp for each p € N. We will denote the inverse of the latter isomorphism
as

fii By = (F'E), . (2.4)
(See Figure [2)
~ i _ r )~
B = f*E iso. on.}:ibers E EZ: = (f*E)p fp (f|Ep) Ef(p)
7’ T 7’ T
N M {r} {/(p)}

f f

Figure 2: Pulled-back vector bundle. EAch of the above diagrams commutes. The pulled-
back vector bundle £’ = f*E comes equipped with a bundle homomorphism f : £/ — E
that, for each p € N, restricts to an isomorpism E1/7 = Eyp)-

[End of Construction 1.]

Remark 2.2 When f : N — M is a diffeomorphism, there is a model of f*FE that
is simpler than the one above. Given such a diffeomorphism, if we define £/ = E
and 7 = f~! o, then E’ is a vector bundle over N, whose fiber at p € N is
' (p) = (o f)(p) = 7 (f(p)) = Efy). More generally, for any set U C N,
we have #'~1(U) = 7= }(f(U)), so for any V. C N we have #'~}(f~1(V)) = == 1(V).
Hence if {(V,, ¥a) faca is a vector-bundle atlas for E, then {(f~(V4), %)} is a vector-
bundle atlas for E’. This bundle E’ is canonically isomorphic to f*E: if we define
H:FE =FE— f*E by

H(v) = (m(v),v) € {m(v)} x B, = {m(v)} X Efxw)) = (" E)riwy

then H is a bundle homomorphism covering idy and restricting to an isomorphism
on each fiber. However, the underlying point-set of E' is literally 1 ,en Ey(y) rather
than the set [ ,en {p} x Ef(y) that is in natural 1-1 correspondence with 1 ,en Ef(y)

(cf. (2.2)).

Construction 2. Let E = Nx E, define 7 : E = NxE — NxM by #(p,v) = (p, 7(v));

ie. T =1idy x .




We claim that £ - N x M “is” a rank-k vector bundle; i.e. that naturally
carries the structure of a rank-k vector bundle. To establish this, again define proj, :
N x E — E by projy(p,v) = v. Then

Epq =7 (p.q) = {p} x E, (2:5)

for all (p,q) € N x M. For each p € N, the map projy|(pyxp, : {P} X Eq = E’(m) — E,
is a bijection. This bijection, combined with the vector-space structure on F,, defines
a vector-space structure on Ej, ,), making proj,| B E(pq — E4 an isomorphism.

Next, let proj; : N x M — N denote the map (p,q) — p. For any set V C M,
observe that 77N x V) = N x 7= 1(V). Given a vector-bundle chart (V) of E,
let V/'= N x V and define

VT (NxV)=Nxa (V)= Nx(VxR)=(NxV)xRF

by ¥ =idy x ¥ : N x 77 1(V) — (N x V) x RF. It is easily seen that (V',¢) is a
vector-bundle chart for E. Applying the same procedure to each chart in a vector-
bundle atlas V := {(V,, ¥4 ) }aca for E, we obtain a collection of vector-bundle charts
V' = {(V], ) }aeca for E', and the smooth-overlap condition for V' is easily checked.
Hence V' is a vector-bundle atlas for E, and E is a vector bundle over N x M.

Now define F': N — N x M by F(p) = (p, f(p)). The image of F' is precisely the
graph of f, a submanifold of N x M. Note that F, viewed as a map F : N — F(N),
is a diffeomorphism; its inverse is proj,|p(n). As is easily seen, the restriction of
any vector bundle to a submanifold Z of the base-space is a vector bundle over Z.
In particular, F| F(n) is a vector bundle over F(N), with projection 7 (restricted to

Elr))-

Since F is a diffeomorphism, we can identify E| F(n) With a vector bundle over N
whose projection-map is 7’ = proj; o @ : E|pvy — N, as in Remark . (See Figure
B)

For each p € N,

(f*E)p =

—

ﬁ’E\F(N))fl ((projy|ravy) ' (p))

“H(F(p))
"(p, f(p))

= {p} x Etpy  (recall )

|
=N

= 7

Thus, as in Construction 1, the fiber (f*E), is canonically (and isomorphically) iden-
tified with Ef(p).

[End of Construction 2.]



F(N) 7' = proji|pn) © 7~T|E|F(N>

N = N

Figure 3: Second construction of f*F ™\ N.

Remark 2.3 As seen in both constructions, there is a natural bundle map
f: ffE — E. But for general maps f : N — M, there is no natural bundle

map from F to f*E. However, on the level of sections, there is a natural linear map
f*:T(E) = T'(f*E) (a pullback map on sections) defined by

(f*s)(p) = f(s(f(p))) (2.6)

(see (2.4)). It often convenient to leave f}j implicit in expressions like the RHS of ([2.6)),
and to implicitly identify (f*E), with Ey). If we do this, then the pullback-equation
[2.6) becomes simply f*s = s o f, the familiar formula for pullback of functions.

3 Pulled-back connections

Assume we have been given manifolds M and N, a rank-k vector bundle £ 5 M,

and a smooth map f : N — M. Let E — N x M and other notation be as
in “Construction 2” in the previous section. Each p € N determines an inclusion
map j, : M — N x M with image {p} x M (the map ¢ — (p,q)). Similarly, each
q € M determines an inclusion map ¢, : N — N x M with image N x {¢} (the map
p+— (p,q)). Specifically, these maps are defined by

Jp(q@) = (p,q) = t4(p) forallp e N, q € M.

A connection V on E naturally determines a connection V on E, as follows. Let
s € ['(E) (the space of sections of F). For each p € N, define a section j;s € I'(E)
by j;s = proj, o s o j,. More visually, j;s: M — E is the map

g€ M+ s(p,q) € By = {p} x E; — proj,(s(p,q)) € E, .
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For each ¢ € M, define a function ¢;s : N — E, by ¢;s = projy o s o ¢,. More visually,
Lys 18 the map

p €N 5(p,q) € Epg) = {p} x By — projy(s(p,q)) € E, .

Note that for each p € N, ¢ € M, the function ¢}s takes its values in the fized—
k-dimensional vector space F,. For each while for p € N, the object j;s is a more
complicated object: a secton of the vector bundle E.

For (p,q)uIN x M, the tangent space T(, o) (N x M) may be canoniically identified
with T, N ®T,M. We use this to write a general element of T{,, ;) (/N x M) as (X, Y,),
where X, € T,N and Y, € T,M. For (X,,Y;) € T(pq (NN x M), define

Vix, 18 = Xp(tp5) + Vi, jps (3.7)

In equation (3.7), “X,(¢45)” denotes the ordinary directiional-derivative, in the direc-
tion X, at p € N, of the function ¢; : N — E,, an ordinary vector-valued function
on N (taking values in the siingle vector space E,). Note tjat both summands on the

RHS of (3.7) lie in the vector space E, = E(, ), so V(x,.y,)s lies in E(M) as well.

Exercise 3.1 Check that equation (3.7)) defines a connection V on E.

Now consider a section s € I'(f*E). Using the diffeomorphism proj, |r) :
F(N) — N, we may identify f*E with the bundle E| F(n) as ain the last step of
“Construction 2” of f*E. Siince F'(N) is a submanifold of N x M, the section s may
be differentiated using V: at any point of (p, f(p)) € F(N), we extend s locally to

a section of E |y on some open neighborhood U of (p, f(p), and use V to covariantly
differentiate § in directions tangent fo F'(N); the result is independent of the choice
of extension. (Ezercise: check this “independent of choice of extension” property for
a connection on a general vector bundle £ — M’ and a submanifold Z C M'.)

Thus, for p € N and X, € TN, we can unambiguously define
(f*V)XpS = 6F*po S

= V(x,.f,x,)5 (where 5 is any local extension of s
to a nbhd of (p, f(p)) in N x M)

= Xp(3pS) + Vix, (43,5 (by (3.7)).
Allowing p to vary, we then obtain a map f*V : ['(T'N) x ['(f*E) — I'(f*E).
Exercise 3.2 Check that f*V is a connection on f*F.

Definition 3.3 The connection f*V on f*FE is the pullback, by f, of the connection
Von E.
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