Pullbacks of vector bundles and connections

Version date: 4/12/2022

Contents

1 Homomorphisms of vector bundles over possibly different manifolds 1
2 Pullbacks of vector bundles 2
3 Pulled-back connections 6

1 Homomorphisms of vector bundles over possibly different manifolds

Let $E \xrightarrow{\pi} M$ and $E^{\prime} \xrightarrow{\pi^{\prime}} N$ be vector bundles over manifolds M, N respectively. A vector-bundle homomorphism (also called simply a bundle homomorphism, homomorphism, or, more ambiguously, a bundle map ${ }^{11}$) is a smooth map $F: E^{\prime} \rightarrow E$ that carries each fiber of E^{\prime} linearly into a fiber of E (not necessarily injectively or surjectively). Given any such F and any $p \in N$, the image $\pi\left(F\left(E_{p}\right)\right)$ is a unique point in M, so we may define a function $f: N \rightarrow M$ by $f(p)=\pi\left(E_{p}\right)$, yielding the commutative diagram in Figure 1 .

Figure 1: Homomorphism of vector bundles. The diagram above commutes. For each $p \in N$, the map $\left.F\right|_{E_{p}^{\prime}}: E_{p}^{\prime} \rightarrow E_{f(p)}$ is linear.

We say that the bundle map $F: E^{\prime} \rightarrow E$ covers the map $f: N \rightarrow M$.

[^0]Temporarily letting $s: N \rightarrow E^{\prime}$ denote the zero-section of E^{\prime} (i.e. $s(p)=0_{E_{p}^{\prime}}$ for all $p \in N$), observe that $f=\pi \circ F \circ s$, a composition of smooth maps. Hence the $\operatorname{map} f: N \rightarrow M$ covered by the bundle-map F is itself smooth.

The most common vector-bundle homomorphisms are those of constant rank, i.e. those for which $\operatorname{rank}\left(\left.F\right|_{E_{p}^{\prime}}\right)$ is the same for all $p \in N$. Among these, the most important are monomorphisms and epimorphisms, those bundle homorphisms $F: E^{\prime} \rightarrow E$ such that for all $p \in N$, the linear map $\left.F\right|_{E_{p}^{\prime}}: E_{p}^{\prime} \rightarrow E_{f(p)}$ is, respectively, injective or surjective. Note that in each of these cases, the covered map f need not be injective or surjective; the injectivity/surjectivity refers purely to the fiberwise behavior of F.

The term isomorphism (of vector bundles) is author-dependent: all authors require a bundle isomorphism F to carry fibers isomorphically to fibers, but some authors (including me) tend not to use the term isomorphism unless, additionally, F covers the identity map (i.e. the case in which $N=M$ and $f=\mathrm{id}_{M}$).

2 Pullbacks of vector bundles

Informally, we may think of a rank- k vector bundle over a manifold M as a "smoothly parametrized" collection of k-dimensional vector spaces $\left\{E_{q}\right\}_{q \in M}$; the parameterspace is M. The definition of vector bundle gives precise meaning to "smoothly parametrized": existence of a vector-bundle atlas for the set $E=\coprod_{q \in M} E_{q}$.

Given manifolds M and N, a rank- k vector bundle $E \xrightarrow{\pi} M$, and $f: N \rightarrow M$ be a smooth map, the collection of vector spaces $\left\{E_{f(p)}\right\}_{p \in N}$ is again a collection of k-dimensional vector spaces, but now parametrized by N rather than M. Intuitively, we ought to be able to think of this collection as being "smoothly parametrized", since the map F is smooth and the set E is a "smoothly parametrized" collection of vector spaces. In other words, the set

$$
\begin{equation*}
\coprod_{p \in N} E_{f(p)} \tag{2.1}
\end{equation*}
$$

ought to carry a natural vector-bundle structure (with base-space N), induced by the smooth map f and the bundle structure of E.

This intuition is correct. The resulting vector bundle over N is called the pullback of E by f, denoted $f^{*} E$.

Remark 2.1 When we write " $E=\coprod_{p \in M} E_{p}$ ", the disjoint-union symbol is just a reminder that the fibers E_{p} are mutually disjoint; $\amalg_{p \in M} E_{p}=\bigcup_{p \in M} E_{p}$. But since a general map $f: N \rightarrow M$ need not be one-to-one, the disjoint-union symbol in " $\amalg_{p \in N} E_{f(p)}$ " has a different meaning: rather than asserting that $E_{f\left(p_{1}\right)} \cap E_{f\left(p_{2}\right)}=\emptyset$ (a false assertion if there are distinct points $p_{1}, p_{2} \in N$ such that $f\left(p_{1}\right)=f\left(p_{2}\right)$), the notation means that for a given $q \in M$, we are associating a separate copy of E_{q} to each $p \in f^{-1}(q)$, and retaining the label p for the copy that arose from p.

This labeling is equivalent to the statement that, as a set, " $\coprod_{p \in N} E_{f(p)}$ " iimplicitly means either $\coprod_{p \in N}\left(\{p\} \times E_{f(p)}\right)$, a union of pairwise-disjoint of subsets of $N \times E$, or $\coprod_{p \in N}\left(E_{f(p)} \times\{p\}\right)$, a union of pairwise-disjoint of subsets of $E \times N$. To do the concrete constructions of $f^{*} E$ below, we have to choose either the " $N \times E$ " meaning of the labeling or the " $E \times N$ " meaning. It is customary to use the " $N \times E$ " meaning, as we do in the constructions below.

The bundle $f^{*} E$ can be defined in several equivalent ways. More precisely, there are several constructions of "models" for $f^{*} E$ that are not all identical (e.g. some may be different as point-sets) but are all canonically isomorphic to each other. Although the models are equivalent, some directly yield insights into a particular concept that are less apparent with other models.

We give two closely-related constructions of $f^{*} E$ (actually the same construction from two different points of view) below. The first construction is faster, while the second gives some geometric insight into pulled-back connections, the topic of Section 3.

Below, we assume we have been given M and N, a rank- k vector bundle $E \xrightarrow{\pi} M$, and a smooth map $f: N \rightarrow M$.

Construction 1 of $f^{*} E$.

First observe that there is a 1-1 correspondence

$$
\begin{align*}
\coprod_{p \in N} E_{f(p)} & \longleftrightarrow \coprod_{p \in N}\left(\{p\} \times E_{f(p)}\right) \subset N \times E \tag{2.2}\\
& =\{(p, v) \in N \times E: f(p)=\pi(v)\} \tag{2.3}
\end{align*}
$$

We take the RHS of (2.3) to be the definition of $f^{*} E$ as a set. It is not hard to show that $f^{*} E$ is a submanifold of $N \times E$, of dimension $\operatorname{dim}(N)+k$.

Let $\operatorname{proj}_{1}: N \times E \rightarrow N$ and $\operatorname{proj}_{2}: N \times E \rightarrow E$ denote the projections onto the first and second factors, respectively, of the Cartesian product. Define maps $\pi^{\prime}: f^{*} E \rightarrow N$ and $\tilde{f}: f^{*} E \rightarrow E$ by $\pi^{\prime}=\left.\operatorname{proj}_{1}\right|_{f^{*} E}$ and $\tilde{f}=\left.\operatorname{proj}_{2}\right|_{f^{*} E}$.

Observe that, for $p \in N$,

$$
\begin{aligned}
\left(f^{*} E\right)_{p} & :=\left(\pi^{\prime}\right)^{-1}(p) \\
& =\{p\} \times\{v \in E: f(p)=\pi(v)\} \\
& =\{p\} \times E_{f(p)}
\end{aligned}
$$

so $\left.\tilde{f}\right|_{\left(f^{*} E\right)_{p}}$ is a bijection $\left(f^{*} E\right)_{p} \rightarrow E_{f(p)}$. The vector-space structure on $E_{f(p)}$, together with the bijection $\left.\tilde{f}\right|_{\left(f^{*} E\right)_{p_{p}}}:\left(f^{*} E\right)_{p} \rightarrow E_{f(p)}$, canonically induces a vector-space structure on $E_{f(p)}$. The map $\left.\tilde{f}\right|_{\left(f^{*} E\right)_{p}}:\left(f^{*} E\right)_{p} \rightarrow E_{f(p)}$ then becomes an isomorphism.

Given any vector-bundle atlas $\mathcal{V}:=\left\{\left(V_{\alpha}, \psi_{\alpha}\right)\right\}_{\alpha \in A}$ for E, let $V_{\alpha}^{\prime}=f^{-1}\left(V_{\alpha}\right)$, and for $p \in V_{\alpha}^{\prime}$ and $v^{\prime} \in\left(\pi^{\prime}\right)^{-1}(p)$ define $\psi_{\alpha}^{\prime}\left(v^{\prime}\right)=\left(p, \psi_{\alpha, f(p)}\left(\tilde{f}\left(v^{\prime}\right)\right)\right)$. (Recall that for
$q \in V$, the map $\psi_{\alpha, q}: E_{q} \rightarrow \mathbf{R}^{k}$ is defined by $\psi_{\alpha}(v)=\left(q, \psi_{\alpha, q}(v)\right)$.) It is straightforward to check that $\mathcal{V}^{\prime}=\left\{\left(V_{\alpha}^{\prime}, \psi_{\alpha}^{\prime}\right)\right\}_{\alpha \in A}$ is a vector-bundle atlas for $f^{*} E$, and hence that $f_{\sim}^{*} E$ is, indeed, a vector bundle over N with projection-map π^{\prime}. Moreover, the map $\tilde{f}: \tilde{f}^{*} E \rightarrow E$ is a bundle homomorphism covering f, and restricts to an isomorphism $\left(f^{*} E\right)_{p} \rightarrow E_{f(p)}$ for each $p \in N$. We will denote the inverse of the latter isomorphism as

$$
\begin{equation*}
\tilde{f}_{p}^{\sharp}: E_{f(p)} \rightarrow\left(f^{*} E\right)_{p} . \tag{2.4}
\end{equation*}
$$

(See Figure 2.)

Figure 2: Pulled-back vector bundle. EAch of the above diagrams commutes. The pulledback vector bundle $E^{\prime}=f^{*} E$ comes equipped with a bundle homomorphism $\tilde{f}: E^{\prime} \rightarrow E$ that, for each $p \in N$, restricts to an isomorpism $E_{p}^{\prime} \rightarrow E_{f(p)}$.
[End of Construction 1.]
Remark 2.2 When $f: N \rightarrow M$ is a diffeomorphism, there is a model of $f^{*} E$ that is simpler than the one above. Given such a diffeomorphism, if we define $E^{\prime}=E$ and $\pi^{\prime}:=f^{-1} \circ \pi$, then E^{\prime} is a vector bundle over N, whose fiber at $p \in N$ is $\pi^{\prime-1}(p)=\left(\pi^{-1} \circ f\right)(p)=\pi^{-1}(f(p))=E_{f(p)}$. More generally, for any set $U \subset N$, we have $\pi^{\prime-1}(U)=\pi^{-1}(f(U))$, so for any $V \subset N$ we have $\pi^{\prime-1}\left(f^{-1}(V)\right)=\pi^{-1}(V)$. Hence if $\left\{\left(V_{\alpha}, \psi_{\alpha}\right)\right\}_{\alpha \in A}$ is a vector-bundle atlas for E, then $\left\{\left(f^{-1}\left(V_{\alpha}\right), \psi_{\alpha}\right)\right\}$ is a vectorbundle atlas for E^{\prime}. This bundle E^{\prime} is canonically isomorphic to $f^{*} E$: if we define $H: E^{\prime}=E \rightarrow f^{*} E$ by

$$
H(v)=(\pi(v), v) \in\{\pi(v)\} \times E_{p}^{\prime}=\{\pi(v)\} \times E_{f(\pi(v))}=\left(f^{*} E\right)_{\pi(v)}
$$

then H is a bundle homomorphism covering id_{N} and restricting to an isomorphism on each fiber. However, the underlying point-set of E^{\prime} is literally $\coprod_{p \in N} E_{f(p)}$ rather than the set $\coprod_{p \in N}\{p\} \times E_{f(p)}$ that is in natural 1-1 correspondence with $\coprod_{p \in N} E_{f(p)}$ (cf. (2.2)).

Construction 2. Let $\tilde{E}=N \times E$, define $\tilde{\pi}: \tilde{E}=N \times E \rightarrow N \times M$ by $\tilde{\pi}(p, v)=(p, \pi(v))$; i.e. $\tilde{\pi}=\operatorname{id}_{N} \times \pi$.

We claim that $\tilde{E} \xrightarrow{\tilde{\pi}} N \times M$ "is" a rank- k vector bundle; i.e. that naturally carries the structure of a rank- k vector bundle. To establish this, again define proj $_{2}$: $N \times E \rightarrow E$ by $\operatorname{proj}_{2}(p, v)=v$. Then

$$
\begin{equation*}
\tilde{E}_{(p, q)}:=\tilde{\pi}^{-1}(p, q)=\{p\} \times E_{q} \tag{2.5}
\end{equation*}
$$

for all $(p, q) \in N \times M$. For each $p \in N$, the map $\left.\operatorname{proj}_{2}\right|_{\{p\} \times E_{q}}:\{p\} \times E_{q}=\tilde{E}_{(p, q)} \rightarrow E_{q}$ is a bijection. This bijection, combined with the vector-space structure on E_{q}, defines a vector-space structure on $\tilde{E}_{(p, q)}$, making $\left.\operatorname{proj}_{2}\right|_{\tilde{E}_{(p, q)}}: \tilde{E}_{(p, q)} \rightarrow E_{q}$ an isomorphism.

Next, let $\overline{\operatorname{proj}}_{1}: N \times M \rightarrow N$ denote the map $(p, q) \mapsto p$. For any set $V \subset M$, observe that $\tilde{\pi}^{-1}(N \times V)=N \times \pi^{-1}(V)$. Given a vector-bundle chart (V, ψ) of E, let $V^{\prime}=N \times V$ and define

$$
\psi^{\prime}: \tilde{\pi}^{-1}(N \times V)=N \times \pi^{-1}(V) \rightarrow N \times\left(V \times \mathbf{R}^{k}\right)=(N \times V) \times \mathbf{R}^{k}
$$

by $\psi^{\prime}=\operatorname{id}_{N} \times \psi: N \times \pi^{-1}(V) \rightarrow(N \times V) \times \mathbf{R}^{k}$. It is easily seen that $\left(V^{\prime}, \psi^{\prime}\right)$ is a vector-bundle chart for \tilde{E}. Applying the same procedure to each chart in a vectorbundle atlas $\mathcal{V}:=\left\{\left(V_{\alpha}, \psi_{\alpha}\right)\right\}_{\alpha \in A}$ for E, we obtain a collection of vector-bundle charts $\mathcal{V}^{\prime}:=\left\{\left(V_{\alpha}^{\prime}, \psi_{\alpha}^{\prime}\right)\right\}_{\alpha \in A}$ for E^{\prime}, and the smooth-overlap condition for \mathcal{V}^{\prime} is easily checked. Hence \mathcal{V}^{\prime} is a vector-bundle atlas for \tilde{E}, and \tilde{E} is a vector bundle over $N \times M$.

Now define $F: N \rightarrow N \times M$ by $F(p)=(p, f(p))$. The image of F is precisely the graph of f, a submanifold of $N \times M$. Note that F, viewed as a map $\hat{F}: N \rightarrow F(N)$, is a diffeomorphism; its inverse is $\left.\operatorname{proj}_{1}\right|_{F(N)}$. As is easily seen, the restriction of any vector bundle to a submanifold Z of the base-space is a vector bundle over Z. In particular, $\left.\tilde{E}\right|_{F(N)}$ is a vector bundle over $F(N)$, with projection $\tilde{\pi}$ (restricted to $\left.\left.\tilde{E}\right|_{F(N)}\right)$.

Since \hat{F} is a diffeomorphism, we can identify $\left.\tilde{E}\right|_{F(N)}$ with a vector bundle over N whose projection-map is $\pi^{\prime}=\operatorname{proj}_{1} \circ \tilde{\pi}:\left.\tilde{E}\right|_{F(N)} \rightarrow N$, as in Remark 2.2. (See Figure 3.)

For each $p \in N$,

$$
\begin{aligned}
\left(f^{*} E\right)_{p} & =\left(\left.\tilde{\pi}\right|_{\left.\tilde{E}\right|_{F(N)}}\right)^{-1}\left(\left(\left.\operatorname{proj}_{1}\right|_{F(N)}\right)^{-1}(p)\right) \\
& =\tilde{\pi}^{-1}(F(p)) \\
& =\tilde{\pi}^{-1}(p, f(p)) \\
& =\{p\} \times E_{f(p)} \quad(\text { recall } 2.5) .
\end{aligned}
$$

Thus, as in Construction 1, the fiber $\left(f^{*} E\right)_{p}$ is canonically (and isomorphically) identified with $E_{f(p)}$.
[End of Construction 2.]

Figure 3: Second construction of $f^{*} E \xrightarrow{\pi^{\prime}} N$.

Remark 2.3 As seen in both constructions, there is a natural bundle map $\tilde{f}: f^{*} E \rightarrow E$. But for general maps $f: N \rightarrow M$, there is no natural bundle map from E to $f^{*} E$. However, on the level of sections, there is a natural linear map $f^{\sharp}: \Gamma(E) \rightarrow \Gamma\left(f^{*} E\right)$ (a pullback map on sections) defined by

$$
\begin{equation*}
\left(f^{\sharp} s\right)(p)=f_{p}^{\sharp}(s(f(p))) \tag{2.6}
\end{equation*}
$$

(see (2.4). It often convenient to leave f_{p}^{\sharp} implicit in expressions like the RHS of (2.6), and to implicitly identify $\left(f^{*} E\right)_{p}$ with $E_{f(p)}$. If we do this, then the pullback-equation (2.6) becomes simply $f^{\sharp} s=s \circ f$, the familiar formula for pullback of functions.

3 Pulled-back connections

Assume we have been given manifolds M and N, a rank- k vector bundle $E \xrightarrow{\pi} M$, and a smooth map $f: N \rightarrow M$. Let $\tilde{E} \xrightarrow{\tilde{\pi}} N \times M$ and other notation be as in "Construction 2 " in the previous section. Each $p \in N$ determines an inclusion map $j_{p}: M \hookrightarrow N \times M$ with image $\{p\} \times M$ (the map $q \mapsto(p, q)$). Similarly, each $q \in M$ determines an inclusion map $\iota_{q}: N \hookrightarrow N \times M$ with image $N \times\{q\}$ (the map $p \mapsto(p, q))$. Specifically, these maps are defined by

$$
j_{p}(q)=(p, q)=\iota_{q}(p) \text { for all } p \in N, q \in M
$$

A connection ∇ on E naturally determines a connection $\widetilde{\nabla}$ on \tilde{E}, as follows. Let $s \in \Gamma(\tilde{E})$ (the space of sections of \tilde{E}). For each $p \in N$, define a section $j_{p}^{*} s \in \Gamma(E)$ by $j_{p}^{*} s=\operatorname{proj}_{2} \circ s \circ j_{p}$. More visually, $j_{p}^{*} s: M \rightarrow E$ is the map

$$
q \in M \longmapsto s(p, q) \in \tilde{E}_{(p, q)}=\{p\} \times E_{q} \longmapsto \operatorname{proj}_{2}(s(p, q)) \in E_{q}
$$

For each $q \in M$, define a function $\iota_{q}^{*} s: N \rightarrow E_{q}$ by $\iota_{q}^{*} s=\operatorname{proj}_{2} \circ s \circ \iota_{q}$. More visually, $\iota_{q}^{*} s$ is the map

$$
p \in N \longmapsto s(p, q) \in \tilde{E}_{(p, q)}=\{p\} \times E_{q} \longmapsto \operatorname{proj}_{2}(s(p, q)) \in E_{q} .
$$

Note that for each $p \in N, q \in M$, the function $\iota_{q}^{*} s$ takes its values in the fixed-k-dimensional vector space E_{q}. For each while for $p \in N$, the object $j_{p}^{*} s$ is a more complicated object: a secton of the vector bundle E.

For $(p, q) \iota N \times M$, the tangent space $T_{(p, q)}(N \times M)$ may be canoniically identified with $T_{p} N \oplus T_{q} M$. We use this to write a general element of $T_{(p, q)}(N \times M)$ as $\left(X_{p}, Y_{q}\right)$, where $X_{p} \in T_{p} N$ and $Y_{q} \in T_{q} M$. For $\left(X_{p}, Y_{q}\right) \in T_{(p, q)}(N \times M)$, define

$$
\begin{equation*}
\widetilde{\nabla}_{\left(X_{p}, Y_{q}\right)} s:=X_{p}\left(\iota_{q}^{*} s\right)+\nabla_{Y_{q}} j_{p}^{*} s \tag{3.7}
\end{equation*}
$$

In equation (3.7), " $X_{p}\left(\iota_{q} s\right)$ " denotes the ordinary directiional-derivative, in the direction X_{p} at $p \in N$, of the function $\iota_{q}^{s}: N \rightarrow E_{q}$, an ordinary vector-valued function on N (taking values in the siingle vector space E_{q}). Note tjat both summands on the RHS of (3.7) lie in the vector space $E_{q}=\tilde{E}_{(p, q)}$, so $\widetilde{\nabla}_{\left(X_{p}, Y_{q}\right)} s$ lies in $\tilde{E}_{(p, q)}$ as well.

Exercise 3.1 Check that equation (3.7) defines a connection $\widetilde{\nabla}$ on \tilde{E}.
Now consider a section $s \in \Gamma\left(f^{*} E\right)$. Using the diffeomorphism $\left.\overline{\operatorname{proj}}_{1}\right|_{F(N)}$: $F(N) \rightarrow N$, we may identify $f^{*} E$ with the bundle $\left.\tilde{E}\right|_{F(N)}$ as ain the last step of "Construction 2" of $f^{*} E$. Siince $F(N)$ is a submanifold of $N \times M$, the section s may be differentiated using $\widetilde{\nabla}$: at any point of $(p, f(p)) \in F(N)$, we extend s locally to a section of $\left.\tilde{E}\right|_{U}$ on some open neighborhood U of $(p, f(p)$, and use $\widetilde{\nabla}$ to covariantly differentiate \tilde{s} in directions tangent fo $F(N)$; the result is independent of the choice of extension. (Exercise: check this "independent of choice of extension" property for a connection on a general vector bundle $E^{\prime} \rightarrow M^{\prime}$ and a submanifold $Z \subset M^{\prime}$.)

Thus, for $p \in N$ and $X_{p} \in T_{p} N$, we can unambiguously define

$$
\left.\begin{array}{rl}
\left(f^{*} \nabla\right)_{X_{p}} s:=\widetilde{\nabla}_{F_{* p} X_{p}} s \\
:=\widetilde{\nabla}_{\left(X_{p}, f_{* p} X_{p}\right)} \tilde{s} \quad & \quad \text { (where } \tilde{s} \text { is any local extension of } s \\
& \text { to a nbhd of }(p, f(p)) \text { in } N \times M)
\end{array}\right] \begin{aligned}
& :=X_{p}\left(\iota_{f(p)}^{*} \tilde{s}\right)+\nabla_{f_{* p} X_{p}}\left(j_{p}^{*} \tilde{s}\right) \quad \text { (by (3.7)). }
\end{aligned}
$$

Allowing p to vary, we then obtain a map $f^{*} \nabla: \Gamma(T N) \times \Gamma\left(f^{*} E\right) \rightarrow \Gamma\left(f^{*} E\right)$.
Exercise 3.2 Check that $f^{*} \nabla$ is a connection on $f^{*} E$.
Definition 3.3 The connection $f^{*} \nabla$ on $f^{*} E$ is the pullback, by f, of the connection ∇ on E.

[^0]: ${ }^{1}$ The term "bundle map" can be applied to general fiber bundles, not just vector bundles. "Homomorphism" is used only when there is some algebraic structure preserved by a map.

