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1 Homomorphisms of vector bundles over possibly

different manifolds

Let E
π→ M and E ′ π′

→ N be vector bundles over manifolds M,N respectively. A
vector-bundle homomorphism (also called simply a bundle homomorphism, homomor-
phism, or, more ambiguously, a bundle map1) is a smooth map F : E ′ → E that
carries each fiber of E ′ linearly into a fiber of E (not necessarily injectively or surjec-
tively). Given any such F and any p ∈ N , the image π(F (Ep)) is a unique point inM ,
so we may define a function f : N → M by f(p) = π(Ep), yielding the commutative
diagram in Figure 1.

E ′ F
- E

N

π′

?

f
- M

?

π

Figure 1: Homomorphism of vector bundles. The diagram above commutes. For each
p ∈ N , the map F |E′

p
: E ′

p → Ef(p) is linear.

We say that the bundle map F : E ′ → E covers the map f : N →M .

1The term “bundle map” can be applied to general fiber bundles, not just vector bundles. “Ho-
momorphism” is used only when there is some algebraic structure preserved by a map.
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Temporarily letting s : N → E ′ denote the zero-section of E ′ (i.e. s(p) = 0E′
p
for

all p ∈ N), observe that f = π ◦ F ◦ s, a composition of smooth maps. Hence the
map f : N →M covered by the bundle-map F is itself smooth.

The most common vector-bundle homomorphisms are those of constant rank, i.e.
those for which rank(F |E′

p
) is the same for all p ∈ N . Among these, the most impor-

tant are monomorphisms and epimorphisms, those bundle homorphisms F : E ′ → E
such that for all p ∈ N , the linear map F |E′

p
: E ′

p → Ef(p) is, respectively, injective or
surjective. Note that in each of these cases, the covered map f need not be injective
or surjective; the injectivity/surjectivity refers purely to the fiberwise behavior of F .

The term isomorphism (of vector bundles) is author-dependent: all authors require
a bundle isomorphism F to carry fibers isomorphically to fibers, but some authors
(including me) tend not to use the term isomorphism unless, additionally, F covers
the identity map (i.e. the case in which N =M and f = idM).

2 Pullbacks of vector bundles

Informally, we may think of a rank-k vector bundle over a manifoldM as a “smoothly
parametrized” collection of k-dimensional vector spaces {Eq}q∈M ; the parameter-
space is M . The definition of vector bundle gives precise meaning to “smoothly
parametrized”: existence of a vector-bundle atlas for the set E =

∐
q∈MEq.

Given manifolds M and N , a rank-k vector bundle E
π→ M , and f : N → M

be a smooth map, the collection of vector spaces {Ef(p)}p∈N is again a collection of
k-dimensional vector spaces, but now parametrized by N rather than M . Intuitively,
we ought to be able to think of this collection as being “smoothly parametrized”,
since the map F is smooth and the set E is a “smoothly parametrized” collection of
vector spaces. In other words, the set∐

p∈N Ef(p) (2.1)

ought to carry a natural vector-bundle structure (with base-space N), induced by the
smooth map f and the bundle structure of E.

This intuition is correct. The resulting vector bundle over N is called the pullback
of E by f , denoted f ∗E.

Remark 2.1 When we write “E =
∐

p∈MEp”, the disjoint-union symbol is just a
reminder that the fibers Ep are mutually disjoint;

∐
p∈MEp =

⋃
p∈M Ep. But since

a general map f : N → M need not be one-to-one, the disjoint-union symbol in
“
∐

p∈NEf(p)” has a different meaning: rather than asserting that Ef(p1) ∩ Ef(p2) = ∅
(a false assertion if there are distinct points p1, p2 ∈ N such that f(p1) = f(p2)),
the notation means that for a given q ∈ M , we are associating a separate copy of
Eq to each p ∈ f−1(q), and retaining the label p for the copy that arose from p.
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This labeling is equivalent to the statement that, as a set, “
∐

p∈NEf(p)” iimplicitly
means either

∐
p∈N({p} × Ef(p)), a union of pairwise-disjoint of subsets of N × E,

or
∐

p∈N(Ef(p) × {p}), a union of pairwise-disjoint of subsets of E × N . To do the
concrete constructions of f ∗E below, we have to choose either the “N ×E” meaning
of the labeling or the “E×N” meaning. It is customary to use the “N×E” meaning,
as we do in the constructions below.

The bundle f ∗E can be defined in several equivalent ways. More precisely, there
are several constructions of “models” for f ∗E that are not all identical (e.g. some may
be different as point-sets) but are all canonically isomorphic to each other. Although
the models are equivalent, some directly yield insights into a particular concept that
are less apparent with other models.

We give two closely-related constructions of f ∗E (actually the same construction
from two different points of view) below. The first construction is faster, while the
second gives some geometric insight into pulled-back connections, the topic of Section
3.

Below, we assume we have been given M and N , a rank-k vector bundle E
π→M ,

and a smooth map f : N →M .

Construction 1 of f ∗E.

First observe that there is a 1-1 correspondence∐
p∈N Ef(p) ←→

∐
p∈N

(
{p} × Ef(p)

)
⊂ N × E (2.2)

= {(p, v) ∈ N × E : f(p) = π(v)}. (2.3)

We take the RHS of (2.3) to be the definition of f ∗E as a set. It is not hard to show
that f ∗E is a submanifold of N × E, of dimension dim(N) + k.

Let proj1 : N × E → N and proj2 : N × E → E denote the projections onto
the first and second factors, respectively, of the Cartesian product. Define maps
π′ : f ∗E → N and f̃ : f ∗E → E by π′ = proj1|f∗E and f̃ = proj2|f∗E.

Observe that, for p ∈ N ,

(f ∗E)p := (π′)−1(p)

= {p} × {v ∈ E : f(p) = π(v)}
= {p} × Ef(p),

so f̃ |(f∗E)p is a bijection (f ∗E)p → Ef(p). The vector-space structure on Ef(p), together

with the bijection f̃ |(f∗E)p : (f
∗E)p → Ef(p), canonically induces a vector-space struc-

ture on Ef(p). The map f̃ |(f∗E)p : (f
∗E)p → Ef(p) then becomes an isomorphism.

Given any vector-bundle atlas V := {(Vα, ψα)}α∈A for E, let V ′
α = f−1(Vα), and

for p ∈ V ′
α and v′ ∈ (π′)−1(p) define ψ′

α(v
′) = (p, ψα,f(p)(f̃(v

′))). (Recall that for
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q ∈ V , the map ψα,q : Eq → Rk is defined by ψα(v) = (q, ψα,q(v)).) It is straightforward
to check that V ′ = {(V ′

α, ψ
′
α)}α∈A is a vector-bundle atlas for f ∗E, and hence that

f ∗E is, indeed, a vector bundle over N with projection-map π′. Moreover, the map
f̃ : f̃ ∗E → E is a bundle homomorphism covering f , and restricts to an isomorphism
(f ∗E)p → Ef(p) for each p ∈ N . We will denote the inverse of the latter isomorphism
as

f̃ ♯
p : Ef(p) → (f ∗E)p . (2.4)

(See Figure 2.)

E ′ = f ∗E
f̃

iso. on fibers

- E

N

π′

?

f
- M

π

?

E ′
p = (f ∗E)p �

f̃ ♯
p = (f̃ |E′

p
)−1

Ef(p)

{p}

π′

?

f
- {f(p)}

π

?

Figure 2: Pulled-back vector bundle. EAch of the above diagrams commutes. The pulled-
back vector bundle E′ = f∗E comes equipped with a bundle homomorphism f̃ : E′ → E
that, for each p ∈ N , restricts to an isomorpism E′

p → Ef(p).

[End of Construction 1.]

Remark 2.2 When f : N → M is a diffeomorphism, there is a model of f ∗E that
is simpler than the one above. Given such a diffeomorphism, if we define E ′ = E
and π′ := f−1 ◦ π, then E ′ is a vector bundle over N , whose fiber at p ∈ N is
π′−1(p) = (π−1 ◦ f)(p) = π−1(f(p)) = Ef(p). More generally, for any set U ⊂ N ,
we have π′−1(U) = π−1(f(U)), so for any V ⊂ N we have π′−1(f−1(V )) = π−1(V ).
Hence if {(Vα, ψα)}α∈A is a vector-bundle atlas for E, then {(f−1(Vα), ψα)} is a vector-
bundle atlas for E ′. This bundle E ′ is canonically isomorphic to f ∗E: if we define
H : E ′ = E → f ∗E by

H(v) = (π(v), v) ∈ {π(v)} × E ′
p = {π(v)} × Ef(π(v)) = (f ∗E)π(v) ,

then H is a bundle homomorphism covering idN and restricting to an isomorphism
on each fiber. However, the underlying point-set of E ′ is literally

∐
p∈N Ef(p) rather

than the set
∐

p∈N {p}×Ef(p) that is in natural 1-1 correspondence with
∐

p∈N Ef(p)

(cf. (2.2)).

Construction 2. Let Ẽ = N×E, define π̃ : Ẽ = N×E → N×M by π̃(p, v) = (p, π(v));
i.e. π̃ = idN × π.
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We claim that Ẽ
π̃−→ N × M “is” a rank-k vector bundle; i.e. that naturally

carries the structure of a rank-k vector bundle. To establish this, again define proj2 :
N × E → E by proj2(p, v) = v. Then

Ẽ(p,q) := π̃−1(p, q) = {p} × Eq (2.5)

for all (p, q) ∈ N×M . For each p ∈ N , the map proj2|{p}×Eq : {p}×Eq = Ẽ(p,q) → Eq

is a bijection. This bijection, combined with the vector-space structure on Eq, defines
a vector-space structure on Ẽ(p,q), making proj2|Ẽ(p,q)

: Ẽ(p,q) → Eq an isomorphism.

Next, let proj1 : N ×M → N denote the map (p, q) 7→ p. For any set V ⊂ M ,
observe that π̃−1(N × V ) = N × π−1(V ). Given a vector-bundle chart (V, ψ) of E,
let V ′ = N × V and define

ψ′ : π̃−1(N × V ) = N × π−1(V )→ N × (V ×Rk) = (N × V )×Rk

by ψ′ = idN × ψ : N × π−1(V ) → (N × V ) ×Rk. It is easily seen that (V ′, ψ′) is a
vector-bundle chart for Ẽ. Applying the same procedure to each chart in a vector-
bundle atlas V := {(Vα, ψα)}α∈A for E, we obtain a collection of vector-bundle charts
V ′ := {(V ′

α, ψ
′
α)}α∈A for E ′, and the smooth-overlap condition for V ′ is easily checked.

Hence V ′ is a vector-bundle atlas for Ẽ, and Ẽ is a vector bundle over N ×M .

Now define F : N → N ×M by F (p) = (p, f(p)). The image of F is precisely the
graph of f, a submanifold of N ×M . Note that F , viewed as a map F̂ : N → F (N),
is a diffeomorphism; its inverse is proj1|F (N). As is easily seen, the restriction of
any vector bundle to a submanifold Z of the base-space is a vector bundle over Z.
In particular, Ẽ|F (N) is a vector bundle over F (N), with projection π̃ (restricted to

Ẽ|F (N)).

Since F̂ is a diffeomorphism, we can identify Ẽ|F (N) with a vector bundle over N

whose projection-map is π′ = proj1 ◦ π̃ : Ẽ|F (N) → N , as in Remark 2.2. (See Figure
3.)

For each p ∈ N ,

(f ∗E)p = (π̃|Ẽ|F (N)
)−1

(
(proj1|F (N))

−1(p)
)

= π̃−1(F (p))

= π̃−1(p, f(p))

= {p} × Ef(p) (recall (2.5)).

Thus, as in Construction 1, the fiber (f ∗E)p is canonically (and isomorphically) iden-
tified with Ef(p).

[End of Construction 2.]
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Ẽ|F (N) = f ∗E

F (N)

π̃|Ẽ|F (N)

?

π′ = proj1|F (N) ◦ π̃|Ẽ|F (N)

N

proj1|F (N)

?
= N

?

Figure 3: Second construction of f ∗E
π′
−→ N.

Remark 2.3 As seen in both constructions, there is a natural bundle map
f̃ : f ∗E → E. But for general maps f : N → M , there is no natural bundle
map from E to f ∗E. However, on the level of sections, there is a natural linear map
f ♯ : Γ(E)→ Γ(f ∗E) (a pullback map on sections) defined by

(f ♯s)(p) = f ♯
p(s(f(p))) (2.6)

(see (2.4)). It often convenient to leave f ♯
p implicit in expressions like the RHS of (2.6),

and to implicitly identify (f ∗E)p with Ef(p). If we do this, then the pullback-equation
(2.6) becomes simply f ♯s = s ◦ f, the familiar formula for pullback of functions.

3 Pulled-back connections

Assume we have been given manifolds M and N , a rank-k vector bundle E
π→ M ,

and a smooth map f : N → M . Let Ẽ
π̃−→ N × M and other notation be as

in “Construction 2” in the previous section. Each p ∈ N determines an inclusion
map jp : M ↪→ N ×M with image {p} ×M (the map q 7→ (p, q)). Similarly, each
q ∈M determines an inclusion map ιq : N ↪→ N ×M with image N × {q} (the map
p 7→ (p, q)). Specifically, these maps are defined by

jp(q) = (p, q) = ιq(p) for all p ∈ N, q ∈M.

A connection ∇ on E naturally determines a connection ∇̃ on Ẽ, as follows. Let
s ∈ Γ(Ẽ) (the space of sections of Ẽ). For each p ∈ N , define a section j∗ps ∈ Γ(E)
by j∗ps = proj2 ◦ s ◦ jp. More visually, j∗ps :M → E is the map

q ∈M 7−→ s(p, q) ∈ Ẽ(p,q) = {p} × Eq 7−→ proj2(s(p, q)) ∈ Eq .
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For each q ∈M , define a function ι∗qs : N → Eq by ι
∗
qs = proj2 ◦ s ◦ ιq. More visually,

ι∗qs is the map

p ∈ N 7−→ s(p, q) ∈ Ẽ(p,q) = {p} × Eq 7−→ proj2(s(p, q)) ∈ Eq .

Note that for each p ∈ N , q ∈ M , the function ι∗qs takes its values in the fixed—
k-dimensional vector space Eq. For each while for p ∈ N , the object j∗ps is a more
complicated object: a secton of the vector bundle E.

For (p, q)ιN ×M , the tangent space T(p,q)(N ×M) may be canoniically identified
with TpN⊕TqM . We use this to write a general element of T(p,q)(N×M) as (Xp, Yq),
where Xp ∈ TpN and Yq ∈ TqM . For (Xp, Yq) ∈ T(p,q)(N ×M), define

∇̃(Xp,Yq)s := Xp(ι
∗
qs) +∇Yq j

∗
ps (3.7)

In equation (3.7), “Xp(ιqs)” denotes the ordinary directiional-derivative, in the direc-
tion Xp at p ∈ N , of the function ιsq : N → Eq, an ordinary vector-valued function
on N (taking values in the siingle vector space Eq). Note tjat both summands on the

RHS of (3.7) lie in the vector space Eq = Ẽ(p,q), so ∇̃(Xp,Yq)s lies in Ẽ(p,q) as well.

Exercise 3.1 Check that equation (3.7) defines a connection ∇̃ on Ẽ.

Now consider a section s ∈ Γ(f ∗E). Using the diffeomorphism proj1|F (N) :

F (N) → N , we may identify f ∗E with the bundle Ẽ|F (N) as ain the last step of
“Construction 2” of f ∗E. Siince F (N) is a submanifold of N ×M , the section s may

be differentiated using ∇̃: at any point of (p, f(p)) ∈ F (N), we extend s locally to

a section of Ẽ|U on some open neighborhood U of (p, f(p), and use ∇̃ to covariantly
differentiate s̃ in directions tangent fo F (N); the result is independent of the choice
of extension. (Exercise: check this “independent of choice of extension” property for
a connection on a general vector bundle E ′ →M ′ and a submanifold Z ⊂M ′.)

Thus, for p ∈ N and Xp ∈ TpN , we can unambiguously define

(f ∗∇)Xps := ∇̃F∗pXp s

:= ∇̃(Xp,f∗pXp)s̃ (where s̃ is any local extension of s

to a nbhd of (p, f(p)) in N ×M)

:= Xp(ι
∗
f(p)s̃) +∇f∗pXp(j

∗
p s̃) (by (3.7)).

Allowing p to vary, we then obtain a map f ∗∇ : Γ(TN)× Γ(f ∗E)→ Γ(f ∗E).

Exercise 3.2 Check that f ∗∇ is a connection on f ∗E.

Definition 3.3 The connection f ∗∇ on f ∗E is the pullback, by f , of the connection
∇ on E.
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