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Bump-functions and the locality of Leibnizian linear operators

Throughout this discussion, M is a manifold of dimension n > 0, and F(M)
denotes the algebra of smooth real-valued functions on M . For each p ∈ M , the set
Fp(M) of “smooth functions defined on an open neighborhood of p” is defined as in
class, and Gp(M) denotes the algebra of smooth germs of real-valued functions at p.

Definition 1.1 Let f be a real-valued function on M . The support of f , denoted
supp(f), is the closure of the set {p ∈ M | f(p) ̸= 0}. If U ⊂ M and supp(f) ⊂ U ,
we say that f is supported in U ; if, in addition, supp(f) is compact, we say that f is
compactly supported in U

Let X be a vector field on M . Then X acts as a Leibnizian linear operator
F(M) → F(M), and, for each p ∈ M , X also acts as a Leibnizian linear operator
Gp(M) → R (via the action of Xp).

1 We may ask whether the action of X on
F(M) determines the action of X on Gp(M). In other words, can every germ at p be
represented by a smooth real-valued function f defined on all of M?

The answer is yes. The key to showing this is the existence of “smooth bump-
functions”:

Lemma 1.2 Let p ∈M and let U be an open neighborhood of p. There exist an open
neighborhood V of p and a smooth function ρ : M → R, compactly supported in U ,
with range in [0, 1], such that ρ is identically 1 on V .

Since the function ρ in the lemma is continuous and achieves the values 0 and 1,
its range is exactly [0, 1], but there is no need to assert this in the definition or in the
later proof. (Similarly, since the neighborhood V on which ρ ≡ 1 is contained in supp(f),

it is automatic that V ⊂ U, so there is no need to assert this containment in the lemma.)

The proof of Lemma 1.2 will be given later in these notes; for now simply assume the
lemma.

Proposition 1.3 Let p ∈ M and let g be a smooth germ at p. Then there exists
f ∈ F(M) such that g is the germ of f at p. In fact, given any representative (f1, U)
of g, there exists such an f that is compactly supported in U .

1A Leibnizian linear map from one algebra (over a given field, in this case R) to another is also
called a derivation.
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Proof: Let (f1, U) be such that g = [(f1, U)], where “[ ]” denotes equivalence-class
under the relation that defines “germ at p”. Let V and ρ be as in Lemma 1.2. Define
f : M → R by

f(p) =

{
ρ(p)f1(p) if p ∈ U,
0 if p ∈M − U.

(1.1)

Observe that M = U
⋃
(M \ supp(ρ)) (since supp(ρ) ⊂ U), the union of two open

sets. Since f1 and ρ are smooth on U , so is the product ρf1, so f |U is smooth. By
definition f is identically 0 on M \ supp(ρ), hence is smooth on this open set as well.
Hence f is smooth, and supp(f) is a closed (hence compact) subset of the compact
set supp(ρ).

Finally, f |V = f1|V , so [(f,M)] = [(f1, U)].

Remark 1.4 The fact that we can take ρ in Lemma 1.2 to have range in [0, 1], and
can take ρ in Lemma 1.2 and f in Proposition 1.3 to have compact support as the
indicated therein, will not be used in these notes. However, these facts are important
for some applications outside these notes.

Corollary 1.5 Let U ⊂ M be a nonempty open subset of M , let f : M → R be
a smooth function that vanishes identically on U , and let L : F(M) → F(M) be a
Leibnizian linear operator. Then the function L(f) vanishes identically on U .

Proof: Let p ∈ U . Let V and ρ be as in Lemma 1.2. Then ρf ≡ 0, since f ≡ 0 on
U and ρ ≡ 0 on M − U. Hence f = (1− ρ)f, and thus

L(f)|p = L
(
(1− ρ)f

)
|p =

(
L(1− ρ)

)
|pf(p) + (1− ρ(p))L(f)|p

= 0,

since f(p) = 0 and ρ(p) = 1. Since p ∈ U was arbitrary, the conclusion follows.

Corollary 1.6 Let L : F(M)→ F(M) be a Leibnizian linear operator and let p ∈M .
Then for all f ∈ F(M), the value of L(f) at p depends only on the germ of f at p.
(I.e. if f1, f2 ∈ F(M) have the same germ at p, then L(f1)|p = L(f2)|p.)

Proof: Let f1, f2 ∈ F(M) be functions with the same germ at p, and let g = f2− f1.
Then g vanishes identically on some open neighborhood U of p. By Corollary 1.5,
L(g)|p = 0. Since L is linear, it follows that L(f1)|p = L(f2)|p.
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Remark 1.7 (Locality Principle) What Corollary 1.6 asserts is a locality principle
for Leibnizian linear operators L : F(M) → F(M): for all f ∈ F(M) and p ∈ M ,
the value of L(f) at p depends only on the behavior of f in an arbitrarily small
neighborhood of p.

Lemma 1.8 Let X be a “set-theoretic vector field” on M : a map M → TM , here
denoted p 7→ Xp, such that Xp ∈ TpM for all p ∈M . For each f ∈ F(M), define the
function X(f) : M → R by X(f)|p = Xp(f). If X(f) is smooth for each f ∈ F(M),
then so is the map X : M → TM , and therefore X is a (smooth) vector field on M .

Proof: Exercise (largely or wholly done in class last semester).

Using the definition of “vector field” given in class, the “(smooth)” in the last line
of the above lemma is redundant. But if we relax the smoothness requirement in that
definition, we can define “continuous vector field”, “Ck vector field”, and “smooth
(= C∞) vector field”. The convention we’re using in class, for simplicity, is that
“vector field” means “smooth vector field” unless otherwise specified.

Corollary 1.9 Let L : F(M) → F(M) be a Leibnizian linear operator. Then there
exists a unique vector field X on M such that L(f) = X(f) for all f ∈ F(M).

Proof: Let p ∈ M and let g ∈ Gp(M). By Proposition 1.3, there exists f ∈ F(M)
representing the germ g. Corollary 1.6 implies that the map Xp : Gp(M)→ R given
by g 7→ L(f)|p is well-defined. For g1, g2 ∈ Gp(M) and c1, c2 ∈ R, if f1, f2 ∈ F(M)
represent g1, g2 respectively, then c1f1 + c2f2 represents c1g1 + c2g2. It follows that
since L is linear and Leibnizian, so is Xp. Thus Xp ∈ TpM (under the canonical
identification of TpM with the space of Leibnizian linear functions Gp(M)→ R).

Hence the map X : M → TM defined by p→ Xp is a “set-theoretic” vector field
on M . By construction, for all f ∈ F(M) and all p ∈ M we have L(f)|p = Xp(f).
Since L(f) is smooth for all f ∈ F(M), it follows that so is X(f) (the function defined
by p 7→ Xp(f). By Lemma 1.8, it follows that X is a (smooth) vector field on M .

Thus X is a vector field with the property that L(f) = X(f) for all f ∈ F(M).
If Y is a vector field with this property and p ∈M , then for all f ∈ F(M) it follows
that Yp(f) = L(f)|p = Xp(f). Proposition 1.3 then implies that Yp = Xp. Since p
was arbitrary, Y = X.

Thus, we have a canonical identification

{vector fields on M} ←→ {Leibnizian linear operators F(M)→ F(M)}.

Because of this, we say that a map L : F(M) → F(M) “is” a vector field if L is
linear and Leibnizian.
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We still must prove Lemma 1.2, which we will do in several stages. Below, “γ” is
not meant to remind you of curves; it’s simply the letter that comes after α and β.

Lemma 1.10 2 Let a, b ∈ R, with a < b. There exists a smooth function γ = γa,b :
R→ R such that

γ(x) = 1 for all x ≤ a,

γ(x) = 0 for all x ≥ b,

and γ is strictly decreasing on [a, b].

Proof: Define α : R→ R by

α(x) =

{
e−1/x if x > 0,
0 if x ≤ 0.

Then (as the student should check) α is smooth.

Now define β : R → R by β(x) = α(x − a)α(b − x). Then β is smooth, strictly
positive on the interval (a, b), and identically zero outside this interval.

Finally, define γ : R→ R by

γ(x) =

∫ b

x
β(t)dt∫ b

a
β(t)dt

. (1.2)

Then (as the student should check), γ has the desired property.

Remark 1.11 Functions such as the function β in Lemma 1.10 are often called bump
functions on R.

In these notes, we will make no use of the fact that the function γa,b in Lemma
1.10 is strictly decreasing on [a, b]. It’s just nice to know that we can choose γa,b to
have this property (in addition to the others stated in Lemma 1.10) in case we ever
want to use this fact.

Corollary 1.12 Let a, b ∈ R, with 0 < a < b, and let x0 ∈ Rn (where n ≥ 1). Then
there exists a smooth function λ = λa,b,x0 : R

n → [0, 1] such that

λ(x) = 1 if ∥x− x0∥ ≤ a,

and

λ(x) = 0 if ∥x− x0∥ ≥ b,

where ∥ ∥ is the Euclidean norm on Rn (∥x∥ = (
∑

i(x
i)2)1/2).

2Lemma 1.10 and Corollary 1.12 are essentially copied from M. W. Hirsch, Differential Topology,
Springer-Verlag 1976.
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Proof: The function λ defined by λ(x) = γa,b(∥x − x0∥), where γa,b is as in Lemma
1.10, has all the desired properties (as the student should check).

Remark 1.13 Functions such as the function λa,b,x0 in Corollary 1.12 are often called
bump functions or cutoff functions or on Rn. “Cutoff” is most commonly used only
when x0 = 0.

Proof of Lemma 1.2: Let (U1, φ) be a chart containing p. Since (U1 ∩U, φ|U1∩U) is
another such chart, without loss of generality we may (and will) assume that U1 ⊂ U .

Let x0 = φ(p). For r > 0 and x ∈ Rn, let Br(x), Br(x) denote the open and
closed balls of radius r, centered at x, with respect to the Euclidean metric on Rn.
Since φ(U1) is open in Rn, we may select r > 0 such that Br(x0) ⊂ φ(U1). Let
a = r

4
, b = r

2
, and let λ : Rn → [0, 1] be a function having the properties of λa,b,x0 in

Corollary 1.12. Let V = φ−1(Br/4(x0)), V2 = φ−1(Br/2(x0)), and W = M − V2; note
that W ⊃M −U1 ⊃M −U . Then V is an open neighborhood of p, the pair {U1,W}
is an open cover of M , and λ is compactly supported in V2 ⊂ U . Define ρ : M → R
by

ρ(q) =

{
λ(φ(q)) if q ∈ U1,
0 if q ∈W ⊃ M − U1 ⊃ M − U.

(This definition is self-consistent since λ ≡ 0 on U1 ∩ W = U1 − V2.) Then ρ is
compactly supported in V2 ⊂ U and has range in [0, 1], and ρ|V ≡ 1. Furthermore,
ρ|U1 = λ ◦ φ, a smooth function, and ρ|W ≡ 0, also a smooth function. Hence ρ is
smooth.
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