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0 Some notation and terminology for these notes

e Throughout, M and N denote manifolds.

e Notation of the form “E — M?” refers to a vector bundle E over M, with
projection 7. In this context, E, denotes the fiber 77!(p), and (unless otherwise
specified), k denotes the rank of E.

e For any vector bundle £ — M

1. T'(F) denotes the space of sections of E.
2. For s € I'(E), the value of s at p may be denoted s(p), s,, or s|,.

3. For any subset Z C M, the notation “E|z” means the set 771(Z). If Z
is a submanifold of M, then E|; inherits a vector-bundle structure from
E by intersecting chart-domains with Z and restricting the corresponding
chart-maps, so we treat as a vector bundle over Z.

4. Let Z C M be a submanifold, let sy € I'(F|z), and let s € ['(E). We say
that s is an extension of sg, or that s extends so, if s|z) = so.

e The symbol “A” is used in these notes to mark the end of various non-proof
items (e.g. definitions and remarks) when there might be some ambiguity as to
whether the next paragraph is a continuation of the same item or is a return to
the main narrative.



1 Homomorphisms of vector bundles over possibly
different manifolds

Let £ M and E' ™ N be vector bundles over manifolds M , N respectively. A
vector-bundle homomorphism (also called simply a bundle homomorphism, homomor-
phism, or, more ambiguously, a bundle ma;ﬂ) is a smooth map F' : £/ — FE that
carries each fiber of E’ linearly into a fiber of £ (not necessarily injectively or surjec-
tively). Given any such F' and any p € N, the image 7 (F(E,)) is a unique point in M,
so we may define a function f : N — M by f(p) = n(E,), yielding the commutative
diagram in Figure [}

El

Figure 1: Homomorphism of vector bundles. The diagram above commutes. For each
p € N, the map F\sz) : B, — Eyp) is linear.

We say that the bundle map F' : E' — E covers the map f: N — M.

Temporarily letting s : N — E’ denote the zero-section of E’ (i.e. s(p) = Op, for
all p € N), observe that f = mo F o s, a composition of smooth maps. Hence the
map f: N — M covered by the bundle-map F is itself smooth.

The most common vector-bundle homomorphisms are those of constant rank, i.e.
those for which rank(F'|g; ) is the same for all p € N. Among these, the most impor-
tant are monomorphisms and epimorphisms, those bundle homorphisms F': £/ — E
such that for all p € N, the linear map F| B, Ez/> — Ey(p) is, respectively, injective or
surjective. Note that in each of these cases, the covered map f need not be injective
or surjective; the injectivity /surjectivity refers purely to the fiberwise behavior of F.

The term isomorphism (of vector bundles) is author-dependent: all authors require
a bundle isomorphism F' to carry fibers isomorphically to fibers, but some authors
(including me) tend not to use the term isomorphism unless, additionally, F' covers
a diffeomorphism, most commonly the identity map (i.e. the case in which N = M

and f =idy).

'The term “bundle map” can be applied to general fiber bundles, not just vector bundles. “Ho-
momorphism” is used only when there is some algebraic structure preserved by a map.



2 Pullbacks of vector bundles

Informally, we may think of a rank-k vector bundle over a manifold M as a “smoothly
parametrized” collection of k-dimensional vector spaces {E,},en; the parameter-
space is M. The definition of wvector bundle gives precise meaning to “smoothly
parametrized”: existence of a vector-bundle atlas for the set £ = [ enE,.

Given manifolds M and N, a rank-k vector bundle £ = M, and f : N — M
be a smooth map, the collection of vector spaces {Ey)}pen is again a collection of
k-dimensional vector spaces, but now parametrized by N rather than M. Intuitively,
we ought to be able to think of this collection as being “smoothly parametrized”,
since the map F' is smooth and the set E is a “smoothly parametrized” collection of
vector spaces. In other words, the set

I pen B (2.1)

ought to carry a natural vector-bundle structure (with base-space N), induced by the
smooth map f and the bundle structure of E.

This intuition is correct. The resulting vector bundle over N is called the pullback
of E by f, denoted f*FE.

Remark 2.1 When we write “E = [[,cpE,”, the disjoint-union symbol is just a
reminder that the fibers F, are mutually disjoint; [{,emE, = UpE v Ep. But since
a general map f : N — M need not be one-to-one, the disjoint-union symbol in
“I1 jenEf(p)” has a different meaning: rather than asserting that Ey ) N Epgy) = 0
(a false assertion if there are distinct points p1,pe € N such that f(p1) = f(p2)), the
notation means that for a given ¢ € M, we are associating a separate copy of E, to
each p € f~1(q), and retaining the label p for the copy that arose from p.

This labeling is equivalent to the statement that, as a set, “Il ,enEp(,)” implicitly
means either [[,en({p} X Ef()), a union of pairwise-disjoint of subsets of N x E,
or [ en(Efp) % {p}), a union of pairwise-disjoint of subsets of E x N. To do the
concrete constructions of f*FE below, we have to choose either the “N x E” meaning
of the labeling or the “F x N” meaning. It is customary to use the “/N x E” meaning,
as we do in the constructions below.A

The bundle f*FE can be defined in several equivalent ways. More precisely, there
are several constructions of “models” for f*FE that are not all identical (e.g. some may
be different as point-sets) but are all canonically isomorphic to each other. Although
the models are equivalent, some directly yield insights into a particular concept that
are less apparent with other models.

We will give two closely-related constructions of f*E' (really the same construction
from two different viewpoints). The first construction is faster, while the second gives
some geometric insight into pulled-back connections, the topic of Section [3]
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Below, we assume we have been given M and N, a rank-k vector bundle £ = M,
and a smooth map f: N — M.

Construction 1 of f*F

First observe that there is a 1-1 correspondence

Hpen Eppy <— pen ({p} X Epp) CN X E 2.2

= {p,v)e NxE: f(p)=n(v)}. (2.3)

We take the RHS of (2.3)) to be the definition of f*E as a set. It is not hard to show
that f*F is a submanifold of N x E, of dimension dim(N) + k.

Let proj; : N x E — N and proj, : N x E — E denote the projections onto
the first and second factors, respectively, of the Cartesian product. Define maps
' f*E— Nand f: f*E — E by ' = proj,| ;g and f = proj,|sg.

Observe that, for p € N,

(fE)y = ()" (p)

= {ptx{vekE:f(p)=n)}
= {p} X Ejp)

SO f~\ (f*E), is a bijection (f*E), — Ey(,). The vector-space structure on Ey,), together
with the bijection f|sg), : ( f*E)p — E(p), canonically induces a vector-space struc-
ture on Ey(,). The map f|+g, : (f*E)p, = Ej() then becomes an isomorphism.

Given any vector-bundle atlas V= {(Va,¥a) taea for E, let V! = f71(V,), and
for p € V, and o' € (7')7'(p) define ¢, (V') = (p, Yo s (f( 1)). (Recall that for
q €V, the map ¥, : F, — R” is defined by 9, (v) = (q,¢a7q(v)).) It is straightforward
to check that V' = {(V.,4¢)}aca is a vector-bundle atlas for f*E and hence that
J*E is, indeed, a vector bundle over N with projection-map n’. Moreover, the map
f: f*E — E is a bundle homomorphism covering f, and restricts to an isomorphism
(f*E), = Ej for each p € N. We will denote the inverse of the latter isomorphism
as

Fii By — (FE)y . (2.4)
(See Figure |2 ) Observe that fjj is simply the map v + (p,v), restricted to Eyy).)
[End of Construction 1.]

Remark 2.2 When f : N — M is a diffeomorphism, there is a model of f*FE that
is simpler than the one above. Given such a diffeomorphism, if we define £/ = E
and 7 = f~!om, then E’ is a vector bundle over N, whose fiber at p € N is
(") (p) = (m o f)(p) = 7 H(f(p)) = Ef(). More generally, for any set U C N, we
have (')~ (U) = 7= 1(f(U)), so for any V. C N we have (/)7 }(f~1(V)) = == 1(V).



El - f*E iso. on fibers £ EI,7 - (f*E)p Ef(p)
/ /
m m m m
N M {p} {f(p)}

f f

Figure 2: Pulled-back vector bundle. Each of the above diagrams commutes. The pulled-
back vector bundle £’ = f*E comes equipped with a bundle homomorphism f : £/ — E
that, for each p € N, restricts to an isomorpism EI’J = Eyp)-

Hence if {(Va, ¥a) }aca is a vector-bundle atlas for E, then {(f~1(V,,),1%4)} is a vector-
bundle atlas for E’. This bundle E’ is canonically isomorphic to f*E (and is therefore
among the bundles that we call models of f*E): if we define H : F' = E — f*E by

H(v) = (m(v),v) € {m(v)} x B, = {7(v)} X Efmey) = (f"E)nwy,  (2.5)

then H is a bundle homomorphism covering idy and restricting to an isomorphism
on each fiber. However, the underlying point-set of E’ is literally [] ,en F #(p) rather
than the set [ en {p} x Eyp that is in natural 1-1 correspondence with [ ,en Etp)
(cf. ) To avoid ambiguity later, we will use the notation f*!'E for this particular
model E' of f*E.

More generally, if f is an embedding we can similarly obtain a simpler model f*'FE
of f*E. The image of an embedding f is a submanifold Z C N, and a vector-bundle
atlas {(Va,¥a)}aca of E restricts to a vector-bundle atlas {(Vo N Z, Ya|r1(vanz)) faca
of E|z; hence E|; =% Z is a vector bundle, where 77 := 7|(g|,). Let f:N—=Z
denote f with codomain replaced by im(f) = Z, the map f : N — Z is a diffeomor-
phism, so we can define a vector bundle £’ = f* FE TN by setting E' = f*(E|)
and 7' = f~1omy. For p € N, the fiber of E! is then (') "1(p) = ((72) ' o f)(p) =
7 (f(p)) = Ef() again. The map H : £/ — f*E defined by is again a bundle
homomorphism covering idy and restricting to an isomorphism on each fiber. A

Construction 2. Let E = Nx E, define 7@ : E = NxE — NxM by #(p,v) = (p,7(v));
le. T =idy X .

We claim that £ — N x M “is” a rank-k vector bundle; i.e. that E naturally
carries the structure of a rank-k vector bundle. To establish this, again define proj, :
N x E — E by projy(p,v) = v. Then

Epq =7 '(p,q) = {p} x E, (2.6)



for all (p,q) € N x M. For each p € N, the map projy|(pyxp, : {P} X Eq = E(M) — E,
is a bijection. This bijection, combined with the vector-space structure on £, defines
a vector-space structure on E, ), making proj,| Eip - E(q) — E4 an isomorphism.

Next, let proj, : N x M — N denote the map (p,q) — p. For any set V C M,
observe that 77N x V) = N x 7=1(V). Given a vector-bundle chart (V%) of E,
let V/' = N x V and define

YA NxV)=Nxa ' (V)= Nx(VxRF)=(NxV)xRF

by ¢/ =idy x 9 : N x 7= 4V) = (N x V) x RF. Tt is easily seen that (V’,¢') is a
vector-bundle chart for F. Applying the same procedure to each chart in a vector-
bundle atlas V = {(Via, ¥a) aeca for E, we obtain a collection of vector-bundle charts
V' = {(Va, ¥,) faca for B, and the smooth-overlap condition for V' is easily checked.
Hence V' is a vector- bundle atlas for E, and E is a vector bundle over N x M.

Now define F': N — N x M by F(p) = (p, f(p)). The image of F' is precisely the
graph of f, a submanifold of N x M. Note that F, viewed as a map F : N — F(N),
is a diffeomorphism; its inverse is proj,| F(v)- As is easily seen, the restriction of
any vector bundle to a submanifold Z of the base-space is a vector bundle over Z.

In particular, F| F(n) 1s a vector bundle over F(N), with projection 7 (restricted to
Elp))-

Since F'is a diffeomorphism we can identify E| F(N) With a vector bundle over N
whose projection-map is 7/ = proj, o 7 : E |p(v) = N, as in Remark 2.2, (See Figure

B

For each p € N,
(f*E)p =

—~

| app) " ((Projilran) ™ (p))
“H(F(p))
“p, f(p))

= {p} x E¢py  (recall )

Thus, as in Construction 1, the fiber (f*E), is canonically (and isomorphically) iden-
tified with Ef(p)

[End of Construction 2.]

|
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Remark 2.3 In both Construction 1 and Construction 2, the total space of f*E—
i.e. f*E as a set (or topological space, or manifold of dimension dim(N) + k)—is

{(pv) €N x E | f(p) = m(0)}.

Remark 2.4 As seen in both constructions, there is a natural bundle map
f: ffE — E. But for general maps f : N — M, there is no natural bundle
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Elroy = ['E

7-‘-|(E|1~*(1\f))

F(N) T = p1"0j1’F(N)O7~T|(E|F<N>)

proj; | F(w)

N = N

Figure 3: Second construction of f*E —— N. The equality indicated in the top line is an
equality of sets (total spaces; see Remark . As a bundle over N, f*E is literally the
bundle F*!(Ep(yy)), where the notation “F™” is as in Remark To simplify notation we

usually leave the canonical isomorphism P E\ F(N) — [*E implicit.

map from F to f*E. However, on the level of sections, there is a natural linear map
f*:T(E) = I(f*E) (a pullback map on sections) defined by

(f*s)(p) = fi(s(f(p))) (2.7)

(see ) It often convenient to leave fg implicit in expressions like the RHS of ,
and to implicitly identify (f*E), with Eyq). The pullback-equation becomes
simply ffs = so f, an equation that would follow directly the definition of pullback
of one map by another if not for the fact that “implicitly identify[ing] (f*E), with
E¢p” is a (mild) abuse of notation.

Although we have (in general) no bundle map E — f*E, Construction 2 gives us
a smooth map

ff*NxE — f'E,
(p,v) = fi(v).

Let H : £/ — E be a bundle homomorphism covering f that restricts to an
isomorphism on each fiber of E’. Define a map T': £’ — f*E by

Tw) = fi (H())
= (7'(v), H(v)) by definition.

Since H covers f, we have f(n'(v)) = n(H(v)) for all v € E’. Hence im(T) C f*E.
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Claim that 7" is a diffeo onto f*E. So is f.

Sokoskoskokosk sk okok skokokskokok sk

3 Pulled-back connections

Assume we have been given manifolds M and N, a rank-k vector bundle E = M,
and a smooth map f : N — M. Let E —— N x M and other notation be as
in “Construction 2”7 in the previous section. Each p € N determines an inclusion
map j, : M — N x M with image {p} x M (the map ¢ — (p,q)). Similarly, each
q € M determines an inclusion map ¢, : N < N x M with image N x {q} (the map
p+— (p,q)). Specifically, these maps are defined by

Jp(@) = (p,q) = t4(p) forallpe N, g€ M.

A connection V on E naturally determines a connection V on E, as follows. Let
s € T'(E) (the space of sections of F). For each p € N, define a section j;s € I'(E)
by j,s = proj, o s o j,. More visually, jis : M — E is the map

q€ M s(p,q) € EN(p,q) = {p} x E, — proj,(s(p,q)) € E, .

For each ¢ € M, define a function ¢;s : N — E, by t;s = projy o s o ¢,. More visually,
LyS 18 the map

p € N — s(p, )Equ {p} x Eq — projy(s(p,q)) € Eq .

Note that for each p € N, ¢ € M, the function ¢;s takes its values in the fized k-
dimensional vector space E,. For each while for p € N, the object j;s is a more
complicated object: a secton of the vector bundle F.

For (p, q)¢IN x M, the tangent space T(p (N x M) may be canonically identified
with T, N ®T,M. We use this to write a general element of T{,, ;) (N x M) as (X}, Y,),
where X, € T,N and Y, € T,M. For (X,,Y;) € T o)(N x M), define

V(x,.v,)s = Xp(tss) + Vy, jrs (3.1)
In equation (3.1), “X,(¢,s)” denotes the ordinary directional-derivative, in the direc-

tion X, at p € N, of the function ¢; : N — FE,, an ordinary vector-valued function
on N (takmg values in the single Vector space [ ). Note that both summands on the

RHS of . lie in the vector space E, E(pq SO V(X y,)s lies in E(pq as well.

Exercise 3.1 Check that equation (3.1) defines a connection V on E.
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Now consider a section s € I'(f*E). Using the diffeomorphism proj;|rn) :
F(N) — N, we may identify f*F with the bundle E]F(N) as in the last step of
“Construction 2” of f*E. Since F(N) is a submanifold of N x M, the section s may
be differentiated using V: at any point of (p, f(p)) € F(N), we extend s locally to a
section of Ely on some open neighborhood U of (p, f(p)), and use V to covariantly
differentiate § in directions tangent to F'(N); the result is independent of the choice
of extension. (FEzercise: check this “independent of choice of extension” property for
a connection on a general vector bundle £’ — M’ and a submanifold Z C M'.)

Thus, for p € N and X, € T,N, we can unambiguously define

(f*V)XpS = f,g(%F*poS)
——

€ EF(p)

= VX, f0pX,)S (where § is any local extension of s
to a nbhd of (p, f(p)) in N x M)

= Xp(35) + Vi,x, (5,5 (by (3.1)).
Allowing p to vary, we then obtain a map f*V : I'(T'N) x I'(f*E) — ['(f*E).
Exercise 3.2 Check that f*V is a connection on f*F.

Definition 3.3 The connection f*V on f*FE is the pullback, by f, of the connection
Von F.
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