

Pullbacks of vector bundles and connections

Version date: 4/28/2022

Contents

0 Some notation and terminology for these notes	1
1 Homomorphisms of vector bundles over possibly different manifolds	2
2 Pullbacks of vector bundles	3
3 Pulled-back connections	8

0 Some notation and terminology for these notes

- Throughout, M and N denote manifolds.
- Notation of the form “ $E \xrightarrow{\pi} M$ ” refers to a vector bundle E over M , with projection π . In this context, E_p denotes the fiber $\pi^{-1}(p)$, and (unless otherwise specified), k denotes the rank of E .
- For any vector bundle $E \xrightarrow{\pi} M$
 1. $\Gamma(E)$ denotes the space of sections of E .
 2. For $s \in \Gamma(E)$, the value of s at p may be denoted $s(p)$, s_p , or $s|_p$.
 3. For any subset $Z \subset M$, the notation “ $E|_Z$ ” means the set $\pi^{-1}(Z)$. If Z is a submanifold of M , then $E|_Z$ inherits a vector-bundle structure from E by intersecting chart-domains with Z and restricting the corresponding chart-maps, so we treat as a vector bundle over Z .
 4. Let $Z \subset M$ be a submanifold, let $s_0 \in \Gamma(E|_Z)$, and let $s \in \Gamma(E)$. We say that s is an *extension* of s_0 , or that s extends s_0 , if $s|_Z = s_0$.
- The symbol “ \blacktriangle ” is used in these notes to mark the end of various non-proof items (e.g. definitions and remarks) when there might be some ambiguity as to whether the next paragraph is a continuation of the same item or is a return to the main narrative.

1 Homomorphisms of vector bundles over possibly different manifolds

Let $E \xrightarrow{\pi} M$ and $E' \xrightarrow{\pi'} N$ be vector bundles over manifolds M, N respectively. A *vector-bundle homomorphism* (also called simply a *bundle homomorphism*, *homomorphism*, or, more ambiguously, a *bundle map*¹) is a smooth map $F : E' \rightarrow E$ that carries each fiber of E' linearly into a fiber of E (not necessarily injectively or surjectively). Given any such F and any $p \in N$, the image $\pi(F(E_p))$ is a unique point in M , so we may define a function $f : N \rightarrow M$ by $f(p) = \pi(E_p)$, yielding the commutative diagram in Figure 1.

$$\begin{array}{ccc} E' & \xrightarrow{F} & E \\ \pi' \downarrow & & \downarrow \pi \\ N & \xrightarrow{f} & M \end{array}$$

Figure 1: *Homomorphism of vector bundles.* The diagram above commutes. For each $p \in N$, the map $F|_{E'_p} : E'_p \rightarrow E_{f(p)}$ is linear.

We say that the bundle map $F : E' \rightarrow E$ *covers* the map $f : N \rightarrow M$.

Temporarily letting $s : N \rightarrow E'$ denote the zero-section of E' (i.e. $s(p) = 0_{E'_p}$ for all $p \in N$), observe that $f = \pi \circ F \circ s$, a composition of smooth maps. Hence the map $f : N \rightarrow M$ covered by the bundle-map F is itself smooth.

The most common vector-bundle homomorphisms are those of *constant rank*, i.e. those for which $\text{rank}(F|_{E'_p})$ is the same for all $p \in N$. Among these, the most important are *monomorphisms* and *epimorphisms*, those bundle homomorphisms $F : E' \rightarrow E$ such that for all $p \in N$, the linear map $F|_{E'_p} : E'_p \rightarrow E_{f(p)}$ is, respectively, injective or surjective. Note that in each of these cases, the covered map f need not be injective or surjective; the injectivity/surjectivity refers purely to the *fiberwise* behavior of F .

The term *isomorphism* (of vector bundles) is author-dependent: all authors require a bundle isomorphism F to carry fibers isomorphically to fibers, but some authors (including me) tend not to use the term *isomorphism* unless, additionally, F covers a diffeomorphism, most commonly the identity map (i.e. the case in which $N = M$ and $f = \text{id}_M$).

¹The term “bundle map” can be applied to general fiber bundles, not just vector bundles. “Homomorphism” is used only when there is some algebraic structure preserved by a map.

2 Pullbacks of vector bundles

Informally, we may think of a rank- k vector bundle over a manifold M as a “smoothly parametrized” collection of k -dimensional vector spaces $\{E_q\}_{q \in M}$; the parameter-space is M . The definition of *vector bundle* gives precise meaning to “smoothly parametrized”: existence of a vector-bundle atlas for the set $E = \coprod_{q \in M} E_q$.

Given manifolds M and N , a rank- k vector bundle $E \xrightarrow{\pi} M$, and $f : N \rightarrow M$ be a smooth map, the collection of vector spaces $\{E_{f(p)}\}_{p \in N}$ is again a collection of k -dimensional vector spaces, but now parametrized by N rather than M . Intuitively, we ought to be able to think of this collection as being “smoothly parametrized”, since the map F is smooth and the set E is a “smoothly parametrized” collection of vector spaces. In other words, the set

$$\coprod_{p \in N} E_{f(p)} \tag{2.1}$$

ought to carry a natural vector-bundle structure (with base-space N), induced by the smooth map f and the bundle structure of E .

This intuition is correct. The resulting vector bundle over N is called the *pullback of E by f* , denoted f^*E .

Remark 2.1 When we write “ $E = \coprod_{p \in M} E_p$ ”, the disjoint-union symbol is just a reminder that the fibers E_p are mutually disjoint; $\coprod_{p \in M} E_p = \bigcup_{p \in M} E_p$. But since a general map $f : N \rightarrow M$ need not be one-to-one, the disjoint-union symbol in “ $\coprod_{p \in N} E_{f(p)}$ ” has a different meaning: rather than asserting that $E_{f(p_1)} \cap E_{f(p_2)} = \emptyset$ (a false assertion if there are distinct points $p_1, p_2 \in N$ such that $f(p_1) = f(p_2)$), the notation means that for a given $q \in M$, we are associating a separate copy of E_q to each $p \in f^{-1}(q)$, and retaining the label p for the copy that arose from p .

This labeling is equivalent to the statement that, as a set, “ $\coprod_{p \in N} E_{f(p)}$ ” implicitly means either $\coprod_{p \in N} (\{p\} \times E_{f(p)})$, a union of pairwise-disjoint of subsets of $N \times E$, or $\coprod_{p \in N} (E_{f(p)} \times \{p\})$, a union of pairwise-disjoint of subsets of $E \times N$. To do the concrete constructions of f^*E below, we have to choose either the “ $N \times E$ ” meaning of the labeling or the “ $E \times N$ ” meaning. It is customary to use the “ $N \times E$ ” meaning, as we do in the constructions below.▲

The bundle f^*E can be defined in several equivalent ways. More precisely, there are several constructions of “models” for f^*E that are not all identical (e.g. some may be different as point-sets) but are all canonically isomorphic to each other. Although the models are equivalent, some directly yield insights into a particular concept that are less apparent with other models.

We will give two closely-related constructions of f^*E (really the same construction from two different viewpoints). The first construction is faster, while the second gives some geometric insight into *pulled-back connections*, the topic of Section 3.

Below, we assume we have been given M and N , a rank- k vector bundle $E \xrightarrow{\pi} M$, and a smooth map $f : N \rightarrow M$.

Construction 1 of f^*E .

First observe that there is a 1-1 correspondence

$$\coprod_{p \in N} E_{f(p)} \longleftrightarrow \coprod_{p \in N} (\{p\} \times E_{f(p)}) \subset N \times E \quad (2.2)$$

$$= \{(p, v) \in N \times E : f(p) = \pi(v)\}. \quad (2.3)$$

We take the RHS of (2.3) to be the definition of f^*E as a *set*. It is not hard to show that f^*E is a submanifold of $N \times E$, of dimension $\dim(N) + k$.

Let $\text{proj}_1 : N \times E \rightarrow N$ and $\text{proj}_2 : N \times E \rightarrow E$ denote the projections onto the first and second factors, respectively, of the Cartesian product. Define maps $\pi' : f^*E \rightarrow N$ and $\tilde{f} : f^*E \rightarrow E$ by $\pi' = \text{proj}_1|_{f^*E}$ and $\tilde{f} = \text{proj}_2|_{f^*E}$.

Observe that, for $p \in N$,

$$\begin{aligned} (f^*E)_p &:= (\pi')^{-1}(p) \\ &= \{p\} \times \{v \in E : f(p) = \pi(v)\} \\ &= \{p\} \times E_{f(p)}, \end{aligned}$$

so $\tilde{f}|_{(f^*E)_p}$ is a bijection $(f^*E)_p \rightarrow E_{f(p)}$. The vector-space structure on $E_{f(p)}$, together with the bijection $\tilde{f}|_{(f^*E)_p} : (f^*E)_p \rightarrow E_{f(p)}$, canonically induces a vector-space structure on $E_{f(p)}$. The map $\tilde{f}|_{(f^*E)_p} : (f^*E)_p \rightarrow E_{f(p)}$ then becomes an isomorphism.

Given any vector-bundle atlas $\mathcal{V} := \{(V_\alpha, \psi_\alpha)\}_{\alpha \in A}$ for E , let $V'_\alpha = f^{-1}(V_\alpha)$, and for $p \in V'_\alpha$ and $v' \in (\pi')^{-1}(p)$ define $\psi'_\alpha(v') = (p, \psi_{\alpha, f(p)}(\tilde{f}(v')))$. (Recall that for $q \in V$, the map $\psi_{\alpha, q} : E_q \rightarrow \mathbf{R}^k$ is defined by $\psi_\alpha(v) = (q, \psi_{\alpha, q}(v))$.) It is straightforward to check that $\mathcal{V}' = \{(V'_\alpha, \psi'_\alpha)\}_{\alpha \in A}$ is a vector-bundle atlas for f^*E , and hence that f^*E is, indeed, a vector bundle over N with projection-map π' . Moreover, the map $\tilde{f} : f^*E \rightarrow E$ is a bundle homomorphism covering f , and restricts to an isomorphism $(f^*E)_p \rightarrow E_{f(p)}$ for each $p \in N$. We will denote the inverse of the latter isomorphism as

$$\tilde{f}_p^\sharp : E_{f(p)} \rightarrow (f^*E)_p. \quad (2.4)$$

(See Figure 2.) Observe that \tilde{f}_p^\sharp is simply the map $v \mapsto (p, v)$, restricted to $E_{f(p)}$.)

[End of Construction 1.]

Remark 2.2 When $f : N \rightarrow M$ is a *diffeomorphism*, there is a model of f^*E that is simpler than the one above. Given such a diffeomorphism, if we define $E' = E$ and $\pi' := f^{-1} \circ \pi$, then E' is a vector bundle over N , whose fiber at $p \in N$ is $(\pi')^{-1}(p) = (\pi^{-1} \circ f)(p) = \pi^{-1}(f(p)) = E_{f(p)}$. More generally, for any set $U \subset N$, we have $(\pi')^{-1}(U) = \pi^{-1}(f(U))$, so for any $V \subset N$ we have $(\pi')^{-1}(f^{-1}(V)) = \pi^{-1}(V)$.

$$\begin{array}{ccc}
E' = f^*E & \xrightarrow{\tilde{f}} & E \\
\pi' \downarrow & \text{iso. on fibers} & \downarrow \pi \\
N & \xrightarrow{f} & M
\end{array}
\quad
\begin{array}{ccc}
E'_p = (f^*E)_p & \xleftarrow{\tilde{f}_p^\sharp = (\tilde{f}|_{E'_p})^{-1}} & E_{f(p)} \\
\pi' \downarrow & & \downarrow \pi \\
\{p\} & \xrightarrow{f} & \{f(p)\}
\end{array}$$

Figure 2: *Pulled-back vector bundle*. Each of the above diagrams commutes. The pulled-back vector bundle $E' = f^*E$ comes equipped with a bundle homomorphism $\tilde{f} : E' \rightarrow E$ that, for each $p \in N$, restricts to an isomorphism $E'_p \rightarrow E_{f(p)}$.

Hence if $\{(V_\alpha, \psi_\alpha)\}_{\alpha \in A}$ is a vector-bundle atlas for E , then $\{(f^{-1}(V_\alpha), \psi_\alpha)\}$ is a vector-bundle atlas for E' . This bundle E' is canonically isomorphic to f^*E (and is therefore among the bundles that we call *models* of f^*E): if we define $H : E' = E \rightarrow f^*E$ by

$$H(v) = (\pi(v), v) \in \{\pi(v)\} \times E'_p = \{\pi(v)\} \times E_{f(\pi(v))} = (f^*E)_{\pi(v)}, \quad (2.5)$$

then H is a bundle homomorphism covering id_N and restricting to an isomorphism on each fiber. However, the underlying point-set of E' is *literally* $\coprod_{p \in N} E_{f(p)}$ rather than the set $\coprod_{p \in N} \{p\} \times E_{f(p)}$ that is in natural 1-1 correspondence with $\coprod_{p \in N} E_{f(p)}$ (cf. (2.2)). To avoid ambiguity later, we will use the notation $f^{*1}E$ for this particular model E' of f^*E .

More generally, if f is an *embedding* we can similarly obtain a simpler model $f^{*1}E$ of f^*E . The image of an embedding f is a submanifold $Z \subset N$, and a vector-bundle atlas $\{(V_\alpha, \psi_\alpha)\}_{\alpha \in A}$ of E restricts to a vector-bundle atlas $\{(V_\alpha \cap Z, \psi_\alpha|_{\pi^{-1}(V_\alpha \cap Z)})\}_{\alpha \in A}$ of $E|_Z$; hence $E|_Z \xrightarrow{\pi_Z} Z$ is a vector bundle, where $\pi_Z := \pi|_{(E|_Z)}$. Let $\hat{f} : N \rightarrow Z$ denote f with codomain replaced by $\text{im}(f) = Z$, the map $\hat{f} : N \rightarrow Z$ is a diffeomorphism, so we can define a vector bundle $E' = f^{*1}E \xrightarrow{\pi'} N$ by setting $E' = \hat{f}^{*1}(E|_Z)$ and $\pi' = \hat{f}^{-1} \circ \pi_Z$. For $p \in N$, the fiber of E'_p is then $(\pi')^{-1}(p) = ((\pi_Z)^{-1} \circ \hat{f})(p) = \pi^{-1}(f(p)) = E_{f(p)}$ again. The map $H : E' \rightarrow f^*E$ defined by (2.5) is again a bundle homomorphism covering id_N and restricting to an isomorphism on each fiber. \blacktriangle

Construction 2. Let $\tilde{E} = N \times E$, define $\tilde{\pi} : \tilde{E} = N \times E \rightarrow N \times M$ by $\tilde{\pi}(p, v) = (p, \pi(v))$; i.e. $\tilde{\pi} = \text{id}_N \times \pi$.

We claim that $\tilde{E} \xrightarrow{\tilde{\pi}} N \times M$ “is” a rank- k vector bundle; i.e. that \tilde{E} naturally carries the structure of a rank- k vector bundle. To establish this, again define $\text{proj}_2 : N \times E \rightarrow E$ by $\text{proj}_2(p, v) = v$. Then

$$\tilde{E}_{(p,q)} := \tilde{\pi}^{-1}(p, q) = \{p\} \times E_q \quad (2.6)$$

for all $(p, q) \in N \times M$. For each $p \in N$, the map $\text{proj}_2|_{\{p\} \times E_q} : \{p\} \times E_q = \tilde{E}_{(p,q)} \rightarrow E_q$ is a bijection. This bijection, combined with the vector-space structure on E_q , defines a vector-space structure on $\tilde{E}_{(p,q)}$, making $\text{proj}_2|_{\tilde{E}_{(p,q)}} : \tilde{E}_{(p,q)} \rightarrow E_q$ an isomorphism.

Next, let $\overline{\text{proj}}_1 : N \times M \rightarrow N$ denote the map $(p, q) \mapsto p$. For any set $V \subset M$, observe that $\tilde{\pi}^{-1}(N \times V) = N \times \pi^{-1}(V)$. Given a vector-bundle chart (V, ψ) of E , let $V' = N \times V$ and define

$$\psi' : \tilde{\pi}^{-1}(N \times V) = N \times \pi^{-1}(V) \rightarrow N \times (V \times \mathbf{R}^k) = (N \times V) \times \mathbf{R}^k$$

by $\psi' = \text{id}_N \times \psi : N \times \pi^{-1}(V) \rightarrow (N \times V) \times \mathbf{R}^k$. It is easily seen that (V', ψ') is a vector-bundle chart for \tilde{E} . Applying the same procedure to each chart in a vector-bundle atlas $\mathcal{V} := \{(V_\alpha, \psi_\alpha)\}_{\alpha \in A}$ for E , we obtain a collection of vector-bundle charts $\mathcal{V}' := \{(V'_\alpha, \psi'_\alpha)\}_{\alpha \in A}$ for E' , and the smooth-overlap condition for \mathcal{V}' is easily checked. Hence \mathcal{V}' is a vector-bundle atlas for \tilde{E} , and \tilde{E} is a vector bundle over $N \times M$.

Now define $F : N \rightarrow N \times M$ by $F(p) = (p, f(p))$. The image of F is precisely the graph of f , a submanifold of $N \times M$. Note that F , viewed as a map $\hat{F} : N \rightarrow F(N)$, is a diffeomorphism; its inverse is $\overline{\text{proj}}_1|_{F(N)}$. As is easily seen, the restriction of any vector bundle to a submanifold Z of the base-space is a vector bundle over Z . In particular, $\tilde{E}|_{F(N)}$ is a vector bundle over $F(N)$, with projection $\tilde{\pi}$ (restricted to $\tilde{E}|_{F(N)}$).

Since \hat{F} is a diffeomorphism, we can identify $\tilde{E}|_{F(N)}$ with a vector bundle over N whose projection-map is $\pi' = \overline{\text{proj}}_1 \circ \tilde{\pi} : \tilde{E}|_{F(N)} \rightarrow N$, as in Remark 2.2. (See Figure 3.)

For each $p \in N$,

$$\begin{aligned} (f^*E)_p &= (\tilde{\pi}|_{\tilde{E}|_{F(N)}})^{-1}((\text{proj}_1|_{F(N)})^{-1}(p)) \\ &= \tilde{\pi}^{-1}(F(p)) \\ &= \tilde{\pi}^{-1}(p, f(p)) \\ &= \{p\} \times E_{f(p)} \quad (\text{recall (2.6)}). \end{aligned}$$

Thus, as in Construction 1, the fiber $(f^*E)_p$ is canonically (and isomorphically) identified with $E_{f(p)}$.

[End of Construction 2.]

Remark 2.3 In both Construction 1 and Construction 2, the *total space* of f^*E —i.e. f^*E as a *set* (or topological space, or manifold of dimension $\dim(N) + k$)—is $\{(p, v) \in N \times E \mid f(p) = \pi(v)\}$.

Remark 2.4 As seen in both constructions, there is a natural bundle map $\tilde{f} : f^*E \rightarrow E$. But for general maps $f : N \rightarrow M$, there is no natural bundle

$$\begin{array}{ccc}
\tilde{E}|_{F(N)} & = & f^*E \\
\tilde{\pi}|_{(\tilde{E}|_{F(N)})} \downarrow & & \downarrow \pi' = \overline{\text{proj}}_1|_{F(N)} \circ \tilde{\pi}|_{(\tilde{E}|_{F(N)})} \\
F(N) & & \\
\overline{\text{proj}}_1|_{F(N)} \downarrow & = & \downarrow \\
N & & N
\end{array}$$

Figure 3: Second construction of $f^*E \xrightarrow{\pi'} N$. The equality indicated in the top line is an equality of *sets* (*total spaces*; see Remark 2.3). As a *bundle over N* , f^*E is literally the bundle $\hat{F}^{*1}(\tilde{E}|_{F(N)})$, where the notation “ \hat{F}^{*1} ” is as in Remark 2.2. To simplify notation we usually leave the canonical isomorphism $\hat{F}^{*1} : \tilde{E}|_{F(N)} \rightarrow f^*E$ implicit.

map from E to f^*E . However, on the level of sections, there *is* a natural linear map $f^\sharp : \Gamma(E) \rightarrow \Gamma(f^*E)$ (a pullback map on sections) defined by

$$(f^\sharp s)(p) = f_p^\sharp(s(f(p))) \quad (2.7)$$

(see (2.4)). It often convenient to leave f_p^\sharp implicit in expressions like the RHS of (2.7), and to implicitly identify $(f^*E)_p$ with $E_{f(p)}$. The pullback-equation (2.7) becomes simply $f^\sharp s = s \circ f$, an equation that would follow directly the definition of *pullback of one map by another* if not for the fact that “implicitly identify[ing] $(f^*E)_p$ with $E_{f(p)}$ ” is a (mild) abuse of notation.

Although we have (in general) no bundle map $E \rightarrow f^*E$, Construction 2 gives us a smooth map

$$\begin{aligned}
f^\sharp : N \times E &\rightarrow f^*E, \\
(p, v) &\mapsto f_p^\sharp(v).
\end{aligned}$$

Let $H : E' \rightarrow E$ be a bundle homomorphism covering f that restricts to an isomorphism on each fiber of E' . Define a map $T : E' \rightarrow f^*E$ by

$$\begin{aligned}
T(v) &= f_{\pi'(v)}^\sharp(H(v)) \\
&= (\pi'(v), H(v)) \quad \text{by definition.}
\end{aligned}$$

Since H covers f , we have $f(\pi'(v)) = \pi(H(v))$ for all $v \in E'$. Hence $\text{im}(T) \subset f^*E$.

Claim that T is a diffeo onto f^*E . So is \tilde{f} .

3 Pulled-back connections

Assume we have been given manifolds M and N , a rank- k vector bundle $E \xrightarrow{\pi} M$, and a smooth map $f : N \rightarrow M$. Let $\tilde{E} \xrightarrow{\tilde{\pi}} N \times M$ and other notation be as in ‘‘Construction 2’’ in the previous section. Each $p \in N$ determines an inclusion map $j_p : M \hookrightarrow N \times M$ with image $\{p\} \times M$ (the map $q \mapsto (p, q)$). Similarly, each $q \in M$ determines an inclusion map $\iota_q : N \hookrightarrow N \times M$ with image $N \times \{q\}$ (the map $p \mapsto (p, q)$). Specifically, these maps are defined by

$$j_p(q) = (p, q) = \iota_q(p) \quad \text{for all } p \in N, q \in M.$$

A connection ∇ on E naturally determines a connection $\tilde{\nabla}$ on \tilde{E} , as follows. Let $s \in \Gamma(\tilde{E})$ (the space of sections of \tilde{E}). For each $p \in N$, define a section $j_p^*s \in \Gamma(E)$ by $j_p^*s = \text{proj}_2 \circ s \circ j_p$. More visually, $j_p^*s : M \rightarrow E$ is the map

$$q \in M \longmapsto s(p, q) \in \tilde{E}_{(p,q)} = \{p\} \times E_q \longmapsto \text{proj}_2(s(p, q)) \in E_q.$$

For each $q \in M$, define a function $\iota_q^*s : N \rightarrow E_q$ by $\iota_q^*s = \text{proj}_2 \circ s \circ \iota_q$. More visually, ι_q^*s is the map

$$p \in N \longmapsto s(p, q) \in \tilde{E}_{(p,q)} = \{p\} \times E_q \longmapsto \text{proj}_2(s(p, q)) \in E_q.$$

Note that for each $p \in N, q \in M$, the function ι_q^*s takes its values in the *fixed* k -dimensional vector space E_q . For each while for $p \in N$, the object j_p^*s is a more complicated object: a sector of the vector bundle E .

For $(p, q) \in N \times M$, the tangent space $T_{(p,q)}(N \times M)$ may be canonically identified with $T_p N \oplus T_q M$. We use this to write a general element of $T_{(p,q)}(N \times M)$ as (X_p, Y_q) , where $X_p \in T_p N$ and $Y_q \in T_q M$. For $(X_p, Y_q) \in T_{(p,q)}(N \times M)$, define

$$\tilde{\nabla}_{(X_p, Y_q)}s := X_p(\iota_q^*s) + \nabla_{Y_q} j_p^*s \tag{3.1}$$

In equation (3.1), ‘‘ $X_p(\iota_q^*s)$ ’’ denotes the ordinary directional-derivative, in the direction X_p at $p \in N$, of the function $\iota_q^*s : N \rightarrow E_q$, an ordinary vector-valued function on N (taking values in the *single* vector space E_q). Note that both summands on the RHS of (3.1) lie in the vector space $E_q = \tilde{E}_{(p,q)}$, so $\tilde{\nabla}_{(X_p, Y_q)}s$ lies in $\tilde{E}_{(p,q)}$ as well.

Exercise 3.1 Check that equation (3.1) defines a connection $\tilde{\nabla}$ on \tilde{E} .

Now consider a section $s \in \Gamma(f^*E)$. Using the diffeomorphism $\overline{\text{proj}_1}|_{F(N)} : F(N) \rightarrow N$, we may identify f^*E with the bundle $\tilde{E}|_{F(N)}$ as in the last step of “Construction 2” of f^*E . Since $F(N)$ is a submanifold of $N \times M$, the section s may be differentiated using $\tilde{\nabla}$: at any point of $(p, f(p)) \in F(N)$, we extend s locally to a section of $\tilde{E}|_U$ on some open neighborhood U of $(p, f(p))$, and use $\tilde{\nabla}$ to covariantly differentiate \tilde{s} in directions tangent to $F(N)$; the result is independent of the choice of extension. (*Exercise*: check this “independent of choice of extension” property for a connection on a general vector bundle $E' \rightarrow M'$ and a submanifold $Z \subset M'$.)

Thus, for $p \in N$ and $X_p \in T_p N$, we can unambiguously define

$$\begin{aligned}
 (f^*\nabla)_{X_p} s &:= f_p^\sharp(\underbrace{\tilde{\nabla}_{F_{*p}X_p} s}_{\in \tilde{E}_{F(p)}}) \\
 &:= \tilde{\nabla}_{(X_p, f_{*p}X_p)} \tilde{s} \quad (\text{where } \tilde{s} \text{ is any local extension of } s \\
 &\quad \text{to a nbhd of } (p, f(p)) \text{ in } N \times M) \\
 &:= X_p(\iota_{f(p)}^* \tilde{s}) + \nabla_{f_{*p}X_p}(j_p^* \tilde{s}) \quad (\text{by (3.1)}).
 \end{aligned}$$

Allowing p to vary, we then obtain a map $f^*\nabla : \Gamma(TN) \times \Gamma(f^*E) \rightarrow \Gamma(f^*E)$.

Exercise 3.2 Check that $f^*\nabla$ is a connection on f^*E .

Definition 3.3 The connection $f^*\nabla$ on f^*E is the *pullback*, by f , of the connection ∇ on E .