
Differential Geometry III—MAT 6932/4930 —Fall 2015
Assignment 1 (possibly not complete yet)

1. Let M be a manifold. Recall that for any finite-dimensional vector space V , the canonical
isomorphism V ∗ ⊗ V → End(V ) is the unique linear map such that for all ξ ∈ V ∗, w ∈ V ,

ξ ⊗ w 7→ {the linear map v 7→ 〈ξ, v〉w},

where 〈·, ·〉 is the dual pairing V ∗ ⊗ V → R.

(a) Let ∇ : Γ(TM)× Γ(TM)→ Γ(TM) be a connection on TM . Define a map

∇̃ : Γ(TM) → Γ(T ∗M ⊗ TM) ∼=
canon.

Γ(End(TM)),

Y 7→ ∇̃Y,

by setting

(∇̃Y )p︸ ︷︷ ︸
∈End(TpM)

(Xp) = ∇XpY (1)

for all Y ∈ Γ(TM), p ∈M,Xp ∈ TpM. Show that ∇̃ is Leibnizian in the following sense: for
all Y, Z ∈ Γ(TM) and all f : M → R,

∇̃(Y + Z) = ∇̃Y + ∇̃Z and (2)

∇̃(fY ) = df ⊗ Y + f∇̃Y. (3)

(b) Conversely, suppose that ∇̃ : Γ(TM)→ Γ(T ∗M ⊗TM) is Leibnizian in the sense of
equations (2)–(3), and use equation (1) to define a map ∇ : Γ(TM) × Γ(TM) → Γ(TM).
Show that ∇ is a connection on TM .

(c) Let ∇̃ be as above, let p ∈M , let {ei} be an arbitrary basis of TpM , and let {θi} be
the basis of T ∗pM dual to {ei}. Show that equation (1) is equivalent to

(∇̃Y )p =
∑
i

θi ⊗∇eiY. (4)

Remark. Another definition of “connection on TM” is a map of the form ∇̃ above;
parts (a) and (b) above show that each of the objects ∇ and ∇̃ canonically determines
the other. For this reason, we usually do not distinguish between ∇ and ∇̃ notationally.
Henceforth, in the context of connections, we allow the same symbol ∇ (with no subscripts
or arguments) to stand for both the map Γ(TM)× Γ(TM)→ Γ(TM) and the canonically
associated map Γ(TM)→ Γ(T ∗M ⊗ TM).
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2. Definition. Let M be a manifold and let ∇ be a connection on TM . We call a vector
field Y covariantly constant, or parallel, if ∇Y = 0 (equivalently, if ∇XY = 0 for all vector
fields X).

(a) Let M = Rn, and let ∇ be the “standard flat connection” D introduced in class.
Find all the covariantly constant vector fields. (You should find that these vector fields
form an n-dimensional vector subspace P of the infinite-dimensional space of vector fields
on Rn, with the further property that if {Y1, . . . , Yn} is a basis of P , then for all p ∈ Rn,
the set {Y1|p, . . . Yn|p} is a basis of TpR

n.)

(b) Let M be any manifold, ∇ a connection on TM , and let P := P (∇) ⊂ Γ(TM) be
the set of covariantly constant vector fields. Show that P is a vector space.

Remark: For connected M , it can be shown (using a tool we don’t have yet) that
dim(P (∇)) ≤ dim(M) for every connection ∇.

(c) Let M be an n-manifold, ∇ a connection on TM , and assume that there exist n
covariantly constant vector fields Y1, . . . , Yn whose values at each p ∈ M form a basis of
TpM (as was the case in part (a)). Show that the connection ∇ is flat.

Remark: Every n-manifold M including Rn, most connections on TM admit no covari-
antly constant vector fields other than the identically-zero vector field. If M has nonzero
Euler characteristic, no connection admits any nontrivial, covariantly constant vector fields.1

However, as the next exercise shows, Rn is not the only n-manifold that admits a connection
∇ with an n-dimensional space of covariantly constant vector fields.

3. (Optional problem.) A manifold M is called parallelizable if TM is a trivial vector
bundle (i.e. if TM is isomorphic to the product bundle M × Rn, where n = dim(M).
Parallelizability is equivalently to the existence of n vector fields X1, . . . , Xn whose values
at each p ∈M form a basis of TpM . (If such vector fields exist, then an isomorphism from
the product bundle M × Rn to TM is then given by (p, (c1, c2, . . . , cn)) 7→

∑
i ciXi(p).)

Such a set of vector fields is called a trivialization of TM .2

(a) Let M be parallelizable and let {Xi}ni=1 be a trivialization of TM . Show that there
is a (unique) connection ∇ on TM such that each Xi is covariantly constant. (In view of
problem 2(c), such a connection is automatically flat.)

(b) Every Lie group G is parallelizable: any basis of the space of left-invariant vector
fields (LIVFs) is a trivialization, and so is any basis of the space of right-invariant vector
fields (RIVFs). Show that, correspondingly, there exist connections ∇L,∇R on TG such
that ∇LY = 0 for every LIVF and ∇RY = 0 for every RIVF.

(c) Let G be a Lie group with identity element e and Lie algebra g = TeG. Show that
the torsion tensors of the connections ∇L,∇R in (b) satisfy

1Zero Euler characteristic is actually a necessary and sufficient condition for TM to admit a connection
that has a nontrivial covariantly constant vector field.

2A bundle isomorphism TM →M ×Rn is also called a trivialization of TM .
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τ∇
L
(Xe, Ye) = −[Xe, Ye], (5)

τ∇
R

(Xe, Ye) = [Xe, Ye], (6)

where Xe, Ye ∈ g and [·, ·] in is the Lie bracket on g. (To get (6) after you’ve gotten (5), the
following reminders may be helpful: (i) If X is a LIVF on G, and ι : G→ G is the inversion
map, then ι∗X is a RIVF. (ii) We have ι∗e = −idg .) Thus, the connections ∇L,∇R on TG
are flat but have nonzero torsion (unless g is abelian, in which case these two connections
coincide and the torsion of each is zero).

(d) Show that if M is a manifold and ∇(1),∇(2) are connections on TM , then for any
functions f1, f2 : M → R satisfying f1 + f2 = 1 (identically), the map f1∇(1) + f2∇(2) :
Γ(TM)× Γ(TM)→ Γ(TM) defined by

(f1∇(1) + f2∇(2))XY := (f1∇(1) + f2∇(2))(X,Y ) := f1∇(1)
X Y + f2∇(2)

X Y

is a connection on TM .

(e) Let G be a Lie group and let ∇L,∇R be as in part (c). By part (d), the map
∇0 : Γ(TG)× Γ(TG)→ Γ(TG)

∇0 =
1

2
∇L +

1

2
∇R

is a connection on TG. Show that this connection has zero torsion at the point e ∈ G.

Remark. It can be shown that the torsion of ∇0 is identically zero, and that the curvature
of ∇0 satisfies

R∇
0
(X,Y )Z = −1

4
[[X,Y ], Z] for all LIVFs X,Y, Z.

(It will be easier to establish these facts once we’ve talked about covariant differentiation
along a curve, so I am not suggesting that you try to establish them now.) Thus a Lie
group with nonabelian Lie algebra has three “special” connections ∇L,∇R, and ∇0. The
connections ∇L,∇R have zero curvature but nonzero torsion, while the connection ∇0 has
zero torsion but nonzero curvature.
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