Differential Geometry III—MAT 6932/4930 —Fall 2015
Assignment 1 (possibly not complete yet)

1. Let M be a manifold. Recall that for any finite-dimensional vector space V', the canonical
isomorphism V* ® V' — End(V) is the unique linear map such that for all £ € V¥, w € V,

& ® w +— {the linear map v — (£, v)w},
where (-, -) is the dual pairing V* @V — R.
(a) Let V:T'(TM) x I'(TM) — T'(TM) be a connection on TM. Define a map

V:I(TM) — D(I*M®TM) =  T(End(TM)),
Y — VY,

by setting

(V Y)p (Xp) = VXPY (1)
€ End(Tp M)
forallY e I'(TM),p € M, X, € T,M. Show that V is Leibnizian in the following sense: for
all Y, Z e I'(TM) and all f: M — R,

V(Y+Z) = VY+VZ and (2)
V(fY) = df®Y + fVY. (3)

(b) Conversely, suppose that V : T(T'M) — ['(T*M @ TM) is Leibnizian in the sense of
equations (2)—(3), and use equation (1) to define a map V : I'(T'M) x I'(TM) — I'(TM).
Show that V is a connection on 7M.

(c) Let V be as above, let p € M, let {e;} be an arbitrary basis of T, M, and let {#} be
the basis of Ty M dual to {e;}. Show that equation (1) is equivalent to

(VY),=> 0@ V.Y (4)

)

Remark. Another definition of “connection on T'M” is a map of the form v above;
parts (a) and (b) above show that each of the objects V and V canonically determines
the other. For this reason, we usually do not distinguish between V and v notationally.
Henceforth, in the context of connections, we allow the same symbol V (with no subscripts
or arguments) to stand for both the map I'(TM) x I'(T'M) — I'(T'M) and the canonically
associated map I'(T' M) — I'(T*M @ TM).



2. Definition. Let M be a manifold and let V be a connection on T'M. We call a vector
field Y covariantly constant, or parallel, if VY = 0 (equivalently, if VxY = 0 for all vector
fields X).

(a) Let M = R", and let V be the “standard flat connection” D introduced in class.
Find all the covariantly constant vector fields. (You should find that these vector fields
form an n-dimensional vector subspace P of the infinite-dimensional space of vector fields
on R", with the further property that if {Y7,...,Y,,} is a basis of P, then for all p € R",
the set {Yip,...Yn|p} is a basis of T,R".)

(b) Let M be any manifold, V a connection on T'M, and let P := P(V) C I'(TM) be
the set of covariantly constant vector fields. Show that P is a vector space.

Remark: For connected M, it can be shown (using a tool we don’t have yet) that
dim(P(V)) < dim(M) for every connection V.

(c) Let M be an n-manifold, V a connection on T'M, and assume that there exist n
covariantly constant vector fields Y7, ...,Y, whose values at each p € M form a basis of
T,M (as was the case in part (a)). Show that the connection V is flat.

Remark: Every n-manifold M including R", most connections on T'M admit no covari-
antly constant vector fields other than the identically-zero vector field. If M has nonzero
Euler characteristic, no connection admits any nontrivial, covariantly constant vector fields.!
However, as the next exercise shows, R is not the only n-manifold that admits a connection
V with an n-dimensional space of covariantly constant vector fields.

3. (Optional problem.) A manifold M is called parallelizable if TM is a trivial vector
bundle (i.e. if TM is isomorphic to the product bundle M x R", where n = dim(M).
Parallelizability is equivalently to the existence of n vector fields X1, ..., X,, whose values
at each p € M form a basis of T, M. (If such vector fields exist, then an isomorphism from
the product bundle M x R"™ to T'M is then given by (p, (c1,c2,...,¢n)) = > . ciXi(p).)
Such a set of vector fields is called a trivialization of TM.?

(a) Let M be parallelizable and let {X;}! ; be a trivialization of TM. Show that there
is a (unique) connection V on T'M such that each X; is covariantly constant. (In view of
problem 2(c), such a connection is automatically flat.)

(b) Every Lie group G is parallelizable: any basis of the space of left-invariant vector
fields (LIVFSs) is a trivialization, and so is any basis of the space of right-invariant vector
fields (RIVFs). Show that, correspondingly, there exist connections V¥, V# on T'G such
that VXY = 0 for every LIVF and VY = 0 for every RIVF.

(c) Let G be a Lie group with identity element e and Lie algebra g = T.G. Show that
the torsion tensors of the connections V¥, V in (b) satisfy

1Zero Euler characteristic is actually a necessary and sufficient condition for TM to admit a connection
that has a nontrivial covariantly constant vector field.
2A bundle isomorphism TM — M x R™ is also called a trivialization of TM.



V(X Ye) = —[Xe Y, (5)
V(X Ye) = XYl (6)

where X,, Y. € g and [, -] in is the Lie bracket on g. (To get (6) after you've gotten (5), the
following reminders may be helpful: (i) If X is a LIVF on G, and ¢ : G — G is the inversion
map, then ¢, X is a RIVF. (ii) We have ¢, = —idy .) Thus, the connections VL, V® on TG
are flat but have nonzero torsion (unless g is abelian, in which case these two connections
coincide and the torsion of each is zero).

(d) Show that if M is a manifold and V(Y V(®) are connections on T'M, then for any
functions f1, fo : M — R satisfying fi; + fo = 1 (identically), the map fiV() + £,V
[(TM) x T(TM) — T(TM) defined by

(WYY + LYD)xY = (AVD + LV (X,Y) = AVYY + VY
is a connection on T'M.

. (e) Let G be a Lie group and let V* V¥ be as in part (c). By part (d), the map
VV:T(TG) xT'(TG) = I'(TG)

1 1
vO — 7vL 7vR
2 * 2
is a connection on T'G. Show that this connection has zero torsion at the point e € G.

Remark. It can be shown that the torsion of V? is identically zero, and that the curvature
of VY satisfies

1
RY(X,Y)Z = —4[[X,Y].2] for all LIVFs XY, Z.

(It will be easier to establish these facts once we've talked about covariant differentiation
along a curve, so I am not suggesting that you try to establish them now.) Thus a Lie
group with nonabelian Lie algebra has three “special” connections V¥, VZ, and V°. The
connections V%, V2 have zero curvature but nonzero torsion, while the connection V has
zero torsion but nonzero curvature.



