
Differential Geometry III—MAT 6932/4930 —Fall 2015
Assignment 2

1. Let (M, g) be a Riemannian manifold. Let c be a positive constant and let grescaled = c2g.
(a) Show that the Levi-Civita connections (M, g) and (M, grescaled) are identical.
(b) Show that the Riemann tensors of (M, g) and (M, grescaled) are identical. (Here,

“Riemann tensor” means the “R(X,Y )Z” version, not the “g(R(X,Y )Z,W )” version.)
(c) Let σ and σrescaled be the sectional-curvature functions of (M, g) and (M, grescaled).

Show that σrescaled = c−2σ.

Note: The reason for writing the rescaling factor as c2, rather than just c, is that if g is
rescaled by c2, then distances in M—which we have not yet defined—end up being rescaled
by c (which is the usual meaning of “rescaling by c” in a metric space). The sphere of radius
r in Rn+1 is isometric to the unit sphere Sn with metric r2gstd, where gstd is the standard
metric on Sn.

2. Let M be an n-dimensional manifold and let ∇ be a connection on TM . Let Rn×n
denote the space of all n× n matrices with real entries, and recall that GL(n,R) is the set
of all invertible such matrices, an open subset of Rn×n.

Let U ⊂ M be open, and assume that TM |U has a “basis of sections”, i.e. a set
{e1, . . . en} of vector fields ei on U whose values at each p ∈ U are a basis of TpM . Let
{e′1, . . . , e′n} be another basis of sections of TM |U . Necessarily, the second basis is related
to the first basis by

e′j =
n∑

i=1

eiG
i
j , 1 ≤ j ≤ n,

for a unique, smooth function G : U → GL(n,R) ⊂ Rn×n. (At each p ∈ U , the Gi
j(p) are

the entries of G(p).)
Let Θ,Θ′ be the connection forms of∇ relative to the bases {e1, . . . , en} and {e′1, . . . , e′n},

respectively.
(a) Show that

Θ′ = G−1ΘG+G−1dG, (1)

where G−1 and G are treated as matrices whose entries are real-valued functions; Θ, Θ′,
and dG are treated as matrices whose entries are real-valued 1-forms; and (dG)ij = d(Gi

j).
Helpful observation: (1) is equivalent to

Θ′(X) = G−1Θ(X)G+G−1X(G) ∀X ∈ Γ(TM |U ). (2)

In (2), all of the objects Θ′(X),Θ(X), G−1, G, and X(G) may be viewed either as Rn×n-
valued functions, or as matrices whose entries are real-valued functions. In the former point
of view, at each p ∈ U , Xp(G) is the directional derivative of the Rn×n-valued function G
in the direction Xp ∈ TpM ; in the latter point of view, Xp(G) is a matrix whose (i, j)th

entry is Xp(G
i
j). In case you’ve forgotten (or never learned) how to compute d(G−1) for a
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GL(n,R)-valued function, the formula can be found by formally taking d of both sides of
GG−1 = constant function I.

(b) Show directly from (2) that

dΘ′ + Θ′ ∧Θ′ = G−1(dΘ + Θ ∧Θ)G (3)

(“Directly” means: don’t use the fact that (dΘ + Θ∧Θ)(X,Y ) is, pointwise, the matrix of
the endomorpism Z 7→ R(X,Y )Z with respect to the basis {ei}. What you’re doing in (b)
is a consistency-check on that fact.)

Observe that even though dG enters in (2) (implying that, in local coordinates, the first
partial derivatives of the Gi

j enter), there are no derivatives of G in (3); the value of the left-
hand side at a point p can be computed just from G(p) and (dΘ+Θ∧Θ)|p ∈ Rn×n⊗

∧2T ∗pM .

3. Hyperbolic space. Let M = Rn
+ := {(x1, . . . , xn ∈ Rn | xn > 0}. Define a Riemannian

metric g on M by

g =
1

(xn)2
gEuc, (4)

where gEuc is restriction to Rn
+ of the standard Riemannian metric on Rn. Let ∇ be the

Levi-Civita connection on (M, g)

(a) Let Θ be the connection-form of ∇ with respect to the coordinate-basis vector fields
{ ∂
∂xi }, where {xi} are the standard coordinates on Rn (restricted to the open set Rn

+. Show
that

Θi
j =

1

xn
(
−δijdxn − δjndxi + δindx

j
)
.

(b) Let K = dΘ + Θ ∧ Θ. Viewing K as an n × n matrix of real-valued 2-forms on Rn
+,

show that the entries Ki
j of this matrix are given by

Ki
j = − dx

i ∧ dxj

(xn)2
.

(c) Show that (M, gEuc) has constant sectional curvature −1.

Remark. There is a property we haven’t defined or discussed yet, completeness, that a
given Riemannian manifold may or may not have. Fact: up to isometry, for each n ≥ 2 there
is a unique complete, connected, simply connected Riemannian n-manifold with constant
sectional curvature −1. Any such manifold is called hyperbolic (n-)space, or a model of
hyperbolic n-space (since such a manifold is unique only up to isometry). The Riemannian
manifold (M, g) above is called the upper half-space model of hyperbolic n-space. There is
also a famous unit disk model of hyperbolic n-space, in which M ′ is the open unit disk in
Rn, centered at the origin, with Riemannian metric

g′ =
4

(1− r2)2
gEuc, (5)
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where r denotes distance to the origin. Observe how similar the right-hand side of (5) is
to 4

(1+r2)2
gEuc,, which is pullback of the standard metric on Sn under the inverse of the

stereographic-projection map Sn \ {north pole}, hence has constant curvature +1.

(d) (Optional). Show by direct computation that (M ′, g′) has constant sectional curvature
−1.

(e) (Optional). Find an explicit isometry (M, g)→ (M ′, g′) or (M ′, g′)→ (M, g).

4. (Optional). Let M,n,∇, U, {ei}, and Θ be as in problem 2. Let {θi} be the “basis of
1-forms on U dual to {ei}”, i.e. the (ordered) set of 1-forms on U for which {θi|p} is the
basis of T ∗pM dual to the basis {ei|p} of TpM for all p ∈ U .

The torsion tensor field τ = τ∇ may be viewed as 2-form with values in TM , a section
of TM ⊗

∧2T ∗M . (At each p ∈ M , τp is an antisymmetric bilinear map TpM × TpM →
TpM . We can canonically identify the space of such maps with TpM ⊗

∧2T ∗pM or with∧2T ∗pM ⊗ TpM . We make the latter choice in this problem. This is similar to the ordering

of tensor-product factors we chose in writing the curvature tensor field R∇ as a section of
TM ⊗ T ∗M ⊗

∧2T ∗M ∼=
canon.

End(TM)⊗
∧2T ∗M .) Show that on U we have

τ = ei ⊗ (dθi + Θi
j ∧ θj). (6)

Consequently, the vanishing of τ on U is equivalent to

dθi + Θi
j ∧ θj = 0, 1 ≤ i ≤ n. (7)

If we assemble {θi} into a column vector to avail ourselves matrix-multiplication nota-
tion, we can write (7) more compactly as

dθ + Θ ∧ θ = 0. (8)
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