
Differential Geometry III—MAT 6932/4930 —Fall 2015
Assignment 3

In this assignment, for any Riemannian manifold (M, g), the connection on TM
that we choose is always the Levi-Civita connection.

1. Let (M, g) be a Riemannian manifold, I ⊂ R an interval, and γ : I →M a smooth
curve for which γ′(t) is nowhere zero. Assume that γ satisfies

∇γ′γ
′ = fγ′

for some function f : I → R (where ∇ is the Levi-Civita connection). Show that γ
can be reparametrized as a geodesic. I.e. show that there exists an interval J and a
diffeomorphism φ : J → I such that γ ◦φ is a geodesic. (Hint: start by showing that,
just as in Calculus 3, any curve with nonvanishing velocity can be reparametrized by
arclength.)

2. (a) Let N be a manifold, M a manifold diffeomorphic to N , and F : M → N
a diffeomorphism. Let ∇N be a connection on TN . Since F is a diffeomorphism,
every vector field X on M pushes forward to a well-defined vector field F∗X on N .
Similarly, under the inverse diffeomorphism F−1, every vector field Z on N pushes
forward to a well-defined vector field (F−1)∗Z on M . Recall that for a diffeomorphism,
the map F∗ : Γ(TM)→ Γ(TN) satisfies (F∗)

−1 = (F−1)∗, so (F−1)∗Z is the same as
(F∗)

−1Z =: F ∗Z, the pullback of Z to M by F .
Define a map

∇M : Γ(TM)× Γ(TM) → Γ(TM),

(X, Y ) 7→ ∇M
X Y,

by

∇M
X Y = F−1∗

(
∇N
F∗XF∗Y

)
. (1)

Show that ∇M is a connection on TM .

(b) Notation as in (a), but now assume that gN is a Riemannian metric on N and
that ∇N is the Levi-Civita connection of (N, gN). Show that ∇M is the Levi-Civita
connection of (M,F ∗gN).

(c) Let (M, gM), (N, gN) be Riemannian manifolds, and assume that F : M → N
is an isometry (i.e. a diffeomorphism such that F ∗gN = gM). Show that if γ is a
geodesic in M , then F ◦ γ is a geodesic in N .1

1For a Riemannian manifold “geodesic” means “geodesic for the Levi-Civita connection” unless
otherwise specified.
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3. Normal Coordinates. Let (Mn, g) be a Riemannian manifold and let p ∈
M . A normal neighborhood of p is the image, under expp, of a ball Bε(0) ⊂ TpM ,

where ε (the radius of the normal neighborhood) is small enough that expp
∣∣
Bε(0)

is a

diffeomorphism onto its image.
Let U be a normal neighborhood of p of radius ε. Let e = {ei}n1 be an orthonormal

basis of TpM . Define a diffeomorphism

φe : (Bε(0) ⊂ Rn) → U,

(a1, . . . , an) 7→ expp(a
iei)

(Here Bε(0) ⊂ Rn is the Euclidean ε-ball.) Then (U, φ−1e ) is a coordinate chart, and
the corresponding coordinate functions xi are called (a system of) normal coordinates
on U, centered at p.

(a) Let {xi} be a normal-coordinate system centered at p determined by an or-
thonormal basis e = {ei}n1 of TpM . Show that

∂

∂xi

∣∣∣∣
p

= ei , 1 ≤ i ≤ n. (2)

(b) Using the fact that straight lines through the origin in Bε(0) ⊂ TpM are
mapped by expp to geodesics, show that(

∇ ∂

∂xi

∂
∂xj

)∣∣∣
p

= 0. (3)

(Hence all the Christoffel symbols in this coordinate system vanish at p. In general
they do not all vanish except at p.)

(c) Let U be a normal neighborhood of p, and let {xi}, {yi} be two systems of
normal coordinates on U centered at p. Show that there exists a constant orthogonal
matrix A relating the two coordinate systems (i.e. yi = Aijx

j).

4. (Optional). Fun with the hyperbolic plane. Assignment 2 introduced the
upper half-space model of hyperbolic n-space. The n = 2 case is call the upper half-
plane model of the hyperbolic plane. For this case, let x and y denote the standard
coordinates on R2, so that R2

+ = {(x, y) ∈ R2 | y > 0} and the Euclidean metric is
gEuc = dx2 + dy2 := dx⊗ dx+ dy⊗ dy. In this notation, the hyperbolic metric on R2

+

is

g = ghyp =
dx2 + dy2

y2
.

From Assignment 2, we know that (R2
+, ghyp) has constant sectional curvature −1.

Below we discover some other interesting features of the hyperbolic plane (as viewed
through the upper half-plane model).
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(a) Let x0 ∈ R, and let C be an open semicircle in the upper half-plane centered
at (x0, 0) (i.e. {(x, y) ∈ H2 | (x − x0)

2 + y2 = R2} for some R > 0). Choose a
parametrization γ of C. Show that γ can be reparametrized as a geodesic.

(b) Same as part (a), but for the vertical ray C = {(x0, y) | y > 0}.

Remarks. (1) It is easy to see that given a point p in the upper half-plane, and
a non-vertical straight line ` through (x1, y1), there exists a unique circle centered on
the x-axis that is tangent to ` at p. It follows that the image of every geodesic in
(H2, ghyp) has image lying in one of the semicircles or vertical rays considered above.

(2) An alternate way of obtaining the results in part (a) and (b) is as follows.
Step 1: Do part (c) below. Step 2: Show that the y-axis, suitably parametrized,
is the image of a unit-speed geodesic γ0 with domain (−∞,∞) and γ0(0) = (0, 1).
Step 3: Using problem 2, show that every unit-speed geodesic, parametrized over its
maximal domain, is fA ◦ γ0 (see part (b)) for some A ∈ SL(2,R). Step 4: Show that
as A ranges over SL(2,R), the images of the y-axis are precisely the semicircles and
vertical lines in (a) and (b).

(c) Identify (x, y) ∈ R2 with the complex number z = x + yi; this identifies R2
+

with H := {z ∈ C | im(z) > 0}. Recall that SL(2,R) denotes the group of real 2× 2

matrices of determinant 1. For A =

(
a b
c d

)
∈ SL(2,R) define the linear fractional

transformation fA : H → C by

fA(z) =
az + b

cz + d

(note that the condition im(z) > 0 ensures that cz + d 6= 0).

(i) Show that for all A ∈ SL(2,R), we have fA(H) = H. Thus fA is a diffeomor-
phism R2

+ → R2
+. Furthermore, fA preserves orientation (this is a consequence

of the fact that, viewed as a map H ⊂ C→ C, is holomorphic).

(ii) Show that for A,B ∈ SL(2,R), fAB = fA◦fB. Thus the map SL(2,R)×R2
+ →

R2
+, (A, z) 7→ A·z := fA(z), is a left-action of SL(2,R) on R2

+.

(iii) Show that for each A ∈ SL(2,R), the map fA : R2
+ → R2

+ preserves the
hyperbolic metric:

(fA)∗ghyp = ghyp .

Remark: Thus the action of SL(2,R) on the hyperbolic plane is an action by
orientation-preserving isometries. Writing Isom+(M, g) for the group of isometries
of an orientable, connected Riemannian manifold (M, g), the map A 7→ fA is a ho-
momorphism SL(2,R) → Isom+(R2

+, ghyp). This homomorphism has a nontrivial
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kernel, the Z2-subgroup {±I} (which happens to be the center of SL(2,R)2). Thus
the quotient group PSL(2,R) := SL(2,R)/(center) acts faithfully as a group of
orientation-preserving isometries of the hyperbolic plane. It can be shown that there
are no other orientation-preserving isometries: the map A 7→ fA is a surjection from
SL(2,R) to Isom+(R2

+, ghyp). Thus PSL(2,R), identified with the group of diffeo-
morphisms given by the SL(2,R)-action, is the full group Isom+(R2

+, ghyp).

2The center of a group G is the subgroup {h ∈ G | gh = hg ∀g ∈ G}.
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