
Differential Geometry III—MAT 6932/4930 —Fall 2015
Assignment 4

In this assignment, for any Riemannian manifold (M, g), unless otherwise specified
the connection ∇ on TM always denotes the Levi-Civita connection, and n always
denotes dim(M).

1. “Decoupling” of the Jacobi Equation. Let (M, g) be a Riemannian manifold,
γ : I →M a non-constant geodesic (I any interval), and let J be a Jacobi field along
γ. Let the vector fields Jpar and J⊥ along γ be the tangential and normal components
of J ; i.e.

Jpar = g(J, T̂)T̂, J⊥ = J − Jpar,

where T̂(t) = T(t)/‖T(t)‖ and T(t) = γ′(t) for all t ∈ I.

(a) Show that Jpar and J⊥ are Jacobi fields along γ.

For the rest of this problem, call the Jacobi field J tangential if J = fT for some
function f : I → R, and normal if J(t) ⊥ T(t) for all t ∈ I.

(b) Show that if J is tangential, then for some a, b ∈ R and all t ∈ I we have
J(t) = (at+ b)T(t).

(c) Show that J is tangential if and only if both J(0) and (∇TJ)(0) are propor-
tional to T(0).

(d) Show that J is normal if and only if both J(0) and (∇TJ)(0) are perpendicular
to T(0).

2. Covariant derivative of certain tensor fields. Let M be a manifold and
let ∇ be an arbitrary connection on TM . The connection ∇ determines a way of
covariantly differentiating any tensor field on M . In this problem, for the sake of
brevity, we will discuss only how to covariantly differentiate sections of the bundle
E = T ∗M ⊗T ∗M ⊗T ∗M ⊗TM . (Our motivation for this choice is that the Riemann
tensor [field] of a Riemannian metric is a section of this bundle. In a later problem,
we will want to covariantly differentiate the Riemann tensor.) The value at p ∈M of
a “set-theoretic” section S of this bundle is a trilinear map Sp : TpM×TpM×TpM →
TpM . For vector fields X, Y, Z, the vector field S(X, Y, Z) is defined pointwise by

S(X, Y, Z)|p = Sp(Xp, Yp, Zp).

If S(X, Y, Z) is smooth for all vector fields X, Y, Z, then we drop the words “set-
theoretic” and call S a section (= smooth section) of E, and write S ∈ Γ(E).

Let S ∈ Γ(E). For vector fields X, Y, Z,W on M , define

1



(∇̃WS)(X, Y, Z) =

∇W (S(X, Y, Z))− S(∇WX, Y, Z)− S(X,∇WY, Z)− S(X, Y,∇WZ), (1)

a vector field on M .

(a) Show that (∇̃WS)(X, Y, Z) is F -quadrilinear in the variables X, Y, Z,W .

As a consequence of F -multilinearity, with S held fixed, for each p ∈ M the
value of (∇̃WS)(X, Y, Z) at p depends only on the values of X, Y, Z,W at p. Thus,
given only Xp, Yp, Zp,Wp ∈ TpM , we can (and do) unambiguously define a vector

(∇WS)p(Xp, Yp, Zp) ∈ TpM by setting (∇WS)p(Xp, Yp, Zp) =
(

(∇̃WS)(X, Y, Z)
)∣∣∣

p
,

where X, Y, Z,W are arbitrary smooth extensions of Xp, Yp, Zp,Wp. In view of this

fact, we henceforth write ∇̃WS just as ∇WS, and interpret “∇WS” as a section of E
if W is a vector field, or as an element of the fiber Ep = T ∗pM ⊗ T ∗pM ⊗ T ∗pM ⊗ TpM
if W is just a single tangent vector at a point p.

Observe that (1) can now be written as

∇W (S(X, Y, Z)) =

(∇WS)(X, Y, Z) + S(∇WX, Y, Z) + S(X,∇WY, Z) + S(X, Y,∇WZ). (2)

But note that on the right-hand side of (2), the first “∇W” is differentiating a section
of E, while the other three are differentiating sections of TM .

(b) Show that, for a fixed vector field W , the expression ∇WS is Leibnizian in S
(i.e. additive in S and satisfying

∇W (fS) = W (f)S + f∇WS

for all smooth f : M → R).

Because the map (W,S) 7→ ∇WS is F -linear in W and Leibnizian in S, and is con-
structed canonically from the connection ∇ on TM , we call this map the connection
on E induced by the connection ∇ on TM .

Remark. If R is the Riemann tensor field of some Riemannian metric, recall that
R is a section of the bundle E above, and it is simply our notational choice to write
“R(X, Y )Z” instead of “R(X, Y, Z)”. Thus, for a Riemann tensor, and a connection
∇ on TM (which, in practice, will usually be the Levi-Civita connection), equation
(2) is written as

∇W (R(X, Y )Z)) =

(∇WR)(X, Y )Z +R(∇WX, Y )Z +R(X,∇WY )Z +R(X, Y )∇WZ. (3)
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3. Taylor expansion of the metric in normal coordinates.
See Assignment 3, problem 3, for terminology used in this problem. You are

allowed to use results of that problem in the current problem.
Let (Mn, g) be a Riemannian manifold, let p ∈ M , let U be a normal neighbor-

hood of p, and let B = Bδ(0) ⊂ TpM be the ball for which expp
∣∣
B

: B → U is a

diffeomorphism. Let e = {ei}n1 be an orthonormal basis of TpM , and let {xi}ni=1 be
the associated system of normal coordinates on U .

With a slight abuse of notation, let x = xiei denote a (temporarily) fixed but
arbitrary point of B, so that expp(x) is exactly the point whose normal coordinates
are (x1, . . . , xn). (Alternatively, temporarily fix q ∈ U . We are simply abbreviating
the normal coordinates xi(q) as xi to simplify some formulas below.) Let w = wiei ∈
TpM . As discussed in class, for ε > 0 sufficiently small, we can define a smooth
map α : (−ε, ε) × [0, 1] → M by α(s, t) = expp(t(x + sw)). For |s| < ε we define
ᾱs : [0, 1] → M by ᾱs(t) = α(s, t). Let γ := ᾱ0. Then ᾱ is a variation of γ through
geodesics, so the variation vector field J := dᾱ

ds

∣∣
s=0

:= ∂α
∂s

∣∣
s=0

is a Jacobi field along
γ. Let T = γ′, and for any vector field Y along γ, let Y ′ = ∇TY, Y

′′ = ∇T∇TY , etc.

(a) Show that J(0) = 0, J ′(0) = w, and J(1) = wi ∂
∂xi

∣∣
expp(x)

. (We saw the first

two of these equalities in class, but the argument for the second was only sketched
verbally. We also saw the third equality, just written differently.)

(b) Let f(t) = ‖J(t)‖2, so that

f ′(t) = 2g(J ′, J),

f ′′(t) = 2g(J ′′, J) + 2g(J ′, J ′),

f ′′′(t) = 2g(J ′′′, J) + 6g(J ′′, J ′),

f (iv)(t) = 2g(J (iv), J) + 8g(J ′′′, J ′) + 6(J ′′, J ′′),

etc. Using the Jacobi equation J ′′ = R(T, J)T , show that the mth derivative of f
can be computed as a universal expression in g, T, J, J ′, the Riemann tensor R, and
the covariant derivatives (∇T )iR up to order m − 2. (Your work should lead you
to the understanding of the phrase “universal expression” in this context, but I am
not asking you to give a formal definition of what it means. Do not try to derive a
formula for the universal expression for arbitrary m; the point of this exercise is only
to show that you could, in principle, find such a formula for any desired order m.)

(c) With f as above, show that f(0) = 0 = f ′(0) = f ′′′(0), that f ′′(0) = 2‖w‖2,
and that f (iv)(0) = 8g(R(T,w)T,w)|0 = −8Rikjlw

iwjxkxl, where {Rikjl} are the
components of the (four-lower-index) Riemann tensor at p in the tensor-space basis
determined by the basis {ei} of TpM . (There is no misprint in the order of indices
above; the w’s are paired with the first and third indices of R, and the x’s are paired
with the second and fourth.) Hence show that
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f(t) = t2‖w‖2 − 1

3
t4Rikjlw

iwjxkxl +O(t5‖w‖2)

= t2wiwj
(
δij −

1

3
t2Rikjlx

kxl +O(t3)

)
.

(d) Using parts (a) and (c) above, show that the metric components gij(x) :=
g( ∂

∂xi
, ∂
∂xj

)
∣∣
expp(x)

satisfy

gij(x) = δij −
1

3
Rikjlx

kxl +O(|x|3), (4)

where |x| = (
∑

i(x
i)2)

1/2
.

(e) Show that if the radius of B is chosen small enough, or if (M, g) is complete,
then |x| = ρ(p, expp(x)), where ρ is the distance-function on M determined by g.
(This part of the problem is completely independent of the preceding parts. Its
purpose is just to provide a geometric interpretation of the term “O(|x|3)” in (4).)
Note: This requirement on radius of B is part of many authors’ definitions of “normal
neighborhood”. I omit it from mine because it is not necessary for the derivation of
equation (4).

4. (Optional problem). Lemmas for use in later problems. Let {yi} be
standard coordinates on Rn, let ω ∈ Ωn−1(Sn−1) be the standard volume form, and
let Vol(Sn−1) =

∫
Sn−1 ω (the volume of the standard, Euclidean, unit sphere).

(a) Show that for all i, j ∈ {1, . . . , n},∫
Sn−1

yiyj ω =
1

n
δij Vol(Sn−1).

(There is a way to do this that does not involve any trigonometric integrals.)

(b) If you were in my class last year, you have already done this problem, and do
not need to do it again. Show that on the complement of the origin in Rn,

dy1 ∧ · · · ∧ dyn = rn−1dr ∧ w̃,

where ω̃ = π∗ω is the pullback of ω via the radial projection π : Rn \ {0} → Sn−1,
y 7→ y/‖y‖.

5. Ricci tensor and scalar curvature. Let (M, g) be a Riemannian manifold. For
each p ∈M and X, Y ∈ TpM , the Riemann tensor defines a linear map TpM → TpM
by Z 7→ R(X,Z)Y . Define

Ric(X, Y ) = Ric|p(X, Y ) = tr(Z 7→ R(X,Z)Y ),
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where “tr” denotes the trace. Thus, if {ei} is an arbitrary basis of TpM and {θi} is
the dual basis of T ∗pM ,

Ric(X, Y ) = 〈θi, R(X, ei)Y 〉.
Clearly the map (X, Y ) 7→ Ric|p(X, Y ) is bilinear, so Ric|p is an element of T ∗pM ⊗
T ∗pM . This tensor is called the Ricci tensor at p. Letting p vary, it is easily seen that
Ric|p depends smoothly on p, so Ric becomes a tensor field on M , called the Ricci
tensor (field) or the Ricci curvature.

(a) Show that with p, {ei}, {θi} as above, the Ricci tensor at p is given by

Ric = Rjl θ
j ⊗ θl,

where Rjl = Ri
jil

and where {Ri
jkl} are the components of the Riemann tensor at p with respect to the

given bases.

(b) Show that the Ricci tensor is a symmetric tensor field: for all p ∈ M and all
X, Y ∈ TpM , we have Ric(X, Y ) = Ric(Y,X).

(c) (Optional). Recall that for any finite-dimensional vector space V any symmetric
bilinear form h : V × V → R is determined by its restriction to the diagonal: if we
know h(X,X) for all X ∈ V , then we know h(X, Y ) for all X, Y ∈ V . This follows
from the polarization identity

h(X, Y ) =
h(X + Y,X + Y )− h(X − Y,X − Y )

4
.

Furthermore, if V is given a norm ‖ ‖, then for all nonzero X ∈ V we have h(X,X) =
‖X‖2h(X̂, X̂), where X̂ = X/‖X‖. Thus, in the presence of a norm, a symmetric
bilinear form from the function fh (notation just for this problem) that it determines
on the unit sphere:

fh : S(V ) := {X ∈ V : ‖X‖ = 1} → R,

X 7→ fh(X) := h(X,X).

In particular, for each p ∈ M , the function fRic : S(TpM) ⊂ TpM carries all the
information of the Ricci tensor at p.

Recall that, at each p, the sectional curvature of M at p is a map G2(TpM)→ R,
P 7→ σ(P). For X ∈ S(TpM) let X⊥ = {Y ∈ TpM : Y ⊥ X}. Let GX

2 (TpM) ⊂
G2(TpM) denote the set of all 2-planes in TpM that contain X. There is a two-to-one
map
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πX : S(X⊥) → GX
2 (TpM),

πX(Y ) = P(X, Y ) := span{X, Y }.

The vector space X⊥ is a Riemannian manifold with the standard Riemannian
metric determined by gp|X⊥ ; thus S(X⊥) inherits a Riemannian metric. Orienting
X⊥ arbitrarily, and giving Sn−1 the induced orientation, we then obtain a volume
form form ωn−2 on S(X⊥). (The subscript here is just a reminder of the dimension
of S(X⊥).) Show that for X ∈ S(TpM),

∫
S(X⊥)

(σ◦πX) ωn−2 =

∫
S(X⊥)

σ(P(X, ·)) ωn−2 =
Vol(Sn−2)

n− 1
Ric(X,X) =

Vol(S(X⊥))

n− 1
fRic(X).

(5)

Remark. From (5), we may view the expression

1

n− 1
fRic(X) =

1

Vol(S(X⊥))

∫
S(X⊥)

(σ ◦ πX) ωn−2 (6)

as representing the average sectional curvature among all two-planes in
TpM that contain X.1

(d) Let gp : TpM → T ∗pM be the isomorphism induced by the inner product gp.
For any tensor hp ∈ T ∗pM⊗T ∗pM , we define the trace of hp with respect to gp, denoted
trgp(hp), to be the image of hp under the following composition maps

T ∗pM ⊗ T ∗pM
gp−1⊗id.−→ ∼=

canon.
Hom(TpM,TpM)

trace−→ R.

Applying this pointwise to any h ∈ Γ(Sym2(T ∗M)) gives a real-valued function
trg(h) : M → R.

1The reason we integrated over S(X⊥) in (5) and (6), rather than over GX
2 (TpM), is that

GX
2 (TpM) is diffeomorphic to the projective space RPn−2, which is not orientable when n is

even. However, whether or not a Riemannian manifold (N, gN ) is orientable, the metric gN in-
duces a well-defined measure “dµN” on N ; it’s simply something that we did not discuss last year.
Therefore for any finite-dimensional inner-product space W , the projectization P(W ) has a Rie-
mannian metric, hence Riemannian measure dµ, induced the by the natural two-to-one covering
map π′ : S(W ) → P(W ) and the standard Riemannian metric on S(W ). (Here we regard W as a
Riemannian manifold with the standard Riemannian metric determined by the given inner product
on W .) Using these facts it can be shown Vol(S(X⊥)) = 2Vol(GX

2 (TpM)) and that∫
S(X⊥)

(σ ◦ πX) ω =

∫
GX

2 (TpM)

σ dµ.

Thus (6) indeed represents the average value of the function σ|GX
2 (TpM) with respect to the induced

measure on GX
2 (TpM).
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Show that for h as above, p ∈M , {ei} any basis of TpM , g·· the matrix of gp with
respect to this basis, and g·· = (g··)

−1,

trg(h)|p = gijhij = hii = hi
i ,

where hij = h(ei, ej).

(e) (Optional, except for reading the definition of scalar curvature). The
scalar curvature or Ricci scalar is the real-valued function R = trg(Ric). Show that
at each p ∈M ,

R(p) =
n

Vol(Sn−1)

∫
S(TpM)

fRic ωn−1

where ωn−1 is the volume form on the sphere S(TpM) induced by the metric gp and
an arbitrary choice of orientation of TpM .

Thus, up to a normalization constant, the scalar curvature at p is the average value
of the function S(TpM) → R, X 7→ fRic(X). But fRic(X) is (for each X) an average
of sectional curvatures, so scalar curvature is sometimes thought of as a “double
average” of sectional curvatures. However, the word “double” can be eliminated: it
can be shown that, up to a normalization constant R(p) is simply the average value
of the sectional curvature σp over the Grassmannian G2(TpM).

6. Riemannian volume form in arbitrary local coordinates. If you were in my
class last year, you have already done this problem, and do not need to do it again.

Let {xi} be local coordinates (not necessarily normal coordinates) on an open
set U ⊂ M , let {ei} be a pointwise-orthonormal basis of TM |U , and let {θi} be the
(pointwise) dual basis of sections of T ∗M . Let A : U → GL(n,R) be the matrix-
valued function relating the bases {dxi}, {θi} by the equation dxi = Aijθ

j.

(a) Express dx1 ∧ · · · ∧ dxn in terms of A and θ1 ∧ · · · ∧ θn.

(b) Express the matrix g·· of metric coefficients gij = g( ∂
∂xi
, ∂
∂xj

) in terms of the
matrix A.

(c) Assume that M is oriented and that {xi} is a positively oriented coordinate
system. Show that Riemannian volume form ωg can be expressed in these local
coordinates by

ωg =
√

det(g··) dx
1 ∧ · · · ∧ dxn.

7. Riemannian volume form in normal coordinates. Assume (M, g) is oriented
and let ωg be the Riemannian volume form. Let p ∈ M , and let {ei} be a positively
oriented basis of TpM , and let {xi} be the corresponding system of normal coordinates
centered at p.
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(a) Use the results of earlier problems to show that

ωg =

(
1− 1

6
Rkl x

kxl +O(|x|3)

)
dx1 ∧ · · · ∧ dxn,

where {Rij} are the components of the Ricci tensor at p in the given coordinate
system.

(b) (Optional). For r > 0, let Sn−1
r (p) ⊂ M denote the sphere of radius r

centered at p (with respect to the distance function ρ determined by g). Below, we
assume r is taken small enough that Sn−1

r (p) is the diffeomorphic image under expp
of the sphere {xiei : |x| = r} ⊂ TpM (see problem 3e). Show as r → 0, the volume of
this sphere is related to the volume of the Euclidean sphere of the same radius, Sn−1

r ,
by

Vol(Sn−1
r (p)) = Vol(Sn−1

r )

(
1− 1

6n
R(p)r2 +O(r3)

)
. (7)

This quantifies (asymptotically) the statement that “larger curvature means smaller
spheres”, and shows that the scalar curvature provides the dominant correction to
the Euclidean formula for the volume of sphere of a given radius. It also shows that
scalar curvature can alternatively be defined by

R(p) = 6n lim
r→0

Vol(Sn−1
r )− Vol(Sn−1

r (p))

r2
(8)

(c) (Optional). With r as in part (b), let Br(p) ⊂ M denote the closed ball of
radius r centered at p. (For purposes of this problem, it does not matter whether we
use open balls or closed balls. I’ve simply used closed balls because that’s usually what
we’re thinking of when we’re talking about volumes of balls.) Derive the asymptotic
expansion of Vol(Br(p)) analogous to (7), and the analog of (8) giving R(p) in terms
of volumes of balls.
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