
Differential Geometry IV—MAT 6932/4930 —Spring 2016
Assignment 2

1. Let E1, E2 be vector bundles over a manifold M , with connections ∇E1 ,∇E2 respectively.
A section of E1⊕E2 can be written as an ordered pair (s1, s2), where si ∈ Γ(Ei). For later
parts of this problem, it is best to write this ordered pair as a 2-component column vector.
Define ∇ = ∇E1⊕E2 : Γ(E1 ⊕ E2)→ Γ(E1 ⊕ E2)⊗ T ∗M) by

∇X
(
s1
s2

)
=

(
∇E1
X s1

∇E2
X s2

)
∀X ∈ Γ(TM).

(a) Show that ∇ is a connection on E1⊕E2. We call ∇ the (induced) direct-sum connection.

(b) Let ΘE1 ,ΘE2 be the connection forms of ∇E1 ,∇E2 with respect to some local trivial-
izations of E1, E2 over a common open set U . Introducing an appropriately induced local
trivialization of E1⊕E2 over U , express the corresponding connection form Θ = ΘE1⊕E2 of
∇ in terms of ΘE1 and ΘE2 .

(c) For i = 1, 2 let FEi ∈ Ω2(End(Ei)) denote the curvature of ∇Ei . Let F∇ ∈ Ω2(End(E1⊕
E2)) denote the curvature of ∇. Parts (i), (ii) below can be done in either order, either
independently or with one part helping to do the other.

(i) Notation and data as in part (b). Let F̂∇ and F̂Ei (i = 1, 2) denote the matrix-valued
two-forms representing F∇ and FEi with respect to the given local trivialization.
Express F̂∇ in terms of F̂E1 and F̂E2 .

(ii) Express F∇ in terms of FE1 and FE2 via a formula that does not involve connection-
forms.

2. Let∇ be a connection on a vector bundle E →M . Let U, V be intersecting open sets inM
over which E is trivial, let (sU ), (sV ) be bases of sections of E|U , E|V (with (sU ) = {sU,µ}kµ=1

etc.), and let gUV ∈ C∞(U
⋂
V,GL(k,R)) be the corresponding transition function (with

(sV ) = (sU )gUV ). Let F̂U , F̂V be the corresponding matrix-valued 2-forms representing the
curvature F∇ over U, V . Using each of the approaches indicated below (independently),
show that on U

⋂
V , we have

F̂V = g−1UV F̂U gUV . (1)

Approach (i): F∇ is a two-form on M with values in End(E).
Approach (ii): In terms of connection forms ΘU ,ΘV , we have

F̂U = dΘU + ΘU ∧ΘU (2)

(etc. for V ), and the connection forms are related on U
⋂
V by

ΘV = g−1UV ΘU gUV + g−1UV dgUV . (3)
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(Equations (2) and (3) were derived in class. For the case E = TM , you derived (1) in
Assignment 2,Problem 2, last semester, but I didn’t ask you to hand it in, so I’m repeating
the [generalized] problem here.) Thus, even though derivatives of the transition function
appear at the level of connection-forms in (3), they disappear at the level of curvature-forms
in (2)—as they must, in view of Approach (i).

3. Let E → M be a vector bundle, and let A(E) denote the set of all connections on
E. As shown in class, A(E) naturally has the structure of an affine space whose group of
translations is the vector space Ω1(End(E)): given any connection ∇ on E,

A(E) =
{
∇+ η | η ∈ Ω1(End(E))

}
. (4)

As a reminder: in (4), the operator ∇+ η : Γ(E)→ Γ(E ⊗ T ∗M) is defined by

(∇+ η)X(s) = ∇Xs+ 〈η,X〉(s) ∀s ∈ Γ(E), X ∈ Γ(TM).

Show that for any ∇ ∈ A, η ∈ Ω1(End(E)), the curvatures of ∇ and ∇ + η are related
by

F∇+η = F∇ + d∇η + η ∧ η. (5)

(Note that each of the three terms on the right-hand side of (5) is an End(E)-valued two-
form. The term d∇η is the covariant exterior derivative of the End(E)-valued 1-form η,
where the connection on End(E) is the one induced by the connection on E. The term η∧η
can also be written as 1

2 [η, η], where [·, ·] is the “wedge-bracket” operation on End(E)-valued
differential forms.)

4. Let E →M be a vector bundle F ⊂ E a sub-bundle. Note that, in general, a connection
∇ on E does not restrict to a connection on F : given s ∈ Γ(F ), X ∈ Γ(TM), the covariant
derivative ∇Xs is automatically a section of E, but its value at a given p ∈M need not lie
in Fp.

(a) Using “∇”, as usual, also to denote the connection induced by ∇ on any tensor-power
of E, show that this induced connection ∇ does preserve the sub-bundles Symm(E) and∧m(E), m ≥ 2.

(b) Let E be given a Riemannian metric h (in the vector-bundle sense: for p ∈M , hp is an
inner product on Ep.). Let πF : E → F be the bundle-homomorphism whose restriction to
each fiber Ep is the orthogonal-projection map Ep → Fp. For s ∈ Γ(E), X ∈ Γ(TM), define

∇FXs = πF (∇Xs).

Show that ∇F is a connection on F .

Remark: Part (b) is phrased in terms of orthogonal projection only for the sake of
familiarity. The only role of the metric h is to define a projection operator Ep → Fp for each
p. A more general version of this problem is: suppose that E1, E2 are complementary sub-
bundles of E (so that E = E1⊕E2). Let πE1 : Γ(E)→ Γ(E1) be the bundle-homomorphism
whose restriction to each fiber Ep is the projection map Ep → E1|p determined by the
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splitting Ep = E1|p ⊕ E2|p. For s ∈ Γ(E1), X ∈ Γ(TM), define ∇E1
X s = πE1(∇Xs). Then

∇E1 is a connection on E1. Note that if E is Riemannian, and F is a sub-bundle of E, we
have E = F ⊕F⊥, so the connection defined in part (b) above is a special case of this more
general construction.

5. In this problem, we use the notation gl(k,R) for the space Mk×k(R) of real k × k
matrices, and the notation so(k) ⊂ gl(k,R) for the subspace consisting of all antisymmetric
matrices. The notation comes from the fact that gl(k,R) and so(k) are the Lie algebras of
the Lie groups GL(k,R) and its subgroup SO(k), respectively.

For Riemannian vector bundle of rank k over a manifold M , and let ∇ be a connection
on E. Just as in the case E = TM , we say that ∇ respects (or preserves) h if for all
X ∈ Γ(TM), s1, s2 ∈ Γ(E), we have

X (h(s1, s2)) = h (∇Xs1, s2) + h (s1,∇Xs2) .

Assume that ∇ respects h. Let U ⊂M be an open set over which E is trivial.

(a) Show that there exist a basis of sections {eµ}kµ=1 of E|U that is orthonormal at each

point (i.e. {eµ(p)}kµ=1 is an orthonormal basis of Ep for all p ∈ U). With the same abuse of
terminology as in “basis of sections”, call such a set {eµ} an orthonormal basis of sections
of E|U .

(b) Choose an orthonormal basis of sections of E|U and let Θ ∈ Ω1(U, gl(k,R) be the
corresponding connection form. Let F̂U ∈ Ω2(U, gl(k,R) be the corresponding matrix-
valued 2-form representing F ∈ Ω2(End(E)). Show that, in fact Θ and F̂U take their values
in the subspace so(k); i.e., Θ ∈ Ω1(U, so(k)) and F̂U ∈ Ω2(U, so(k)).

6. Let E →M be a vector bundle with connection ∇ = ∇E and let ∇M be a connection on
M . Write ∇ for the induced connection on E ⊗ T ∗M . For s ∈ Γ(E), the covariant Hessian
of s is the object Hs defined by

Hs = ∇∇s ∈ Γ(E ⊗ T ∗M ⊗ T ∗M). (6)

(Note that the inner “∇” in (6) is simply the connection∇E , but the outer “∇” is the tensor-
product connection on E ⊗ T ∗M , depending both the connection ∇E and the connection
∇M .)

(a) Let s ∈ Γ(E), X, Y ∈ Γ(TM). Then Hs(X,Y ) := (Hs)(X,Y ) is a section of E. Show
that

Hs(X,Y ) = ∇X∇Y s−∇∇M
X Y s. (7)

(b) Assume that the connection ∇M is torsion-free. Show that the curvature F∇ of ∇ on
E satisfies

F∇(X,Y )s = Hs(X,Y )−Hs(Y,X).

(Thus, in general, Hs(X,Y ) is not symmmetric in X and Y .)
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