
Differential Geometry IV—MAT 6932/4930 —Spring 2016
Assignment 3

1. (Optional). Let M be a manifold, E a distribution on M . Let E⊥ ⊂ T ∗M be
the subbundle defined by E⊥p = {θ ∈ T ∗pM | θ(X) = 0 ∀X ∈ Ep} (the annihilator
of Ep). Let I ⊂ Ω∗(M) be the ideal generated by Γ(E⊥) (i.e. I is the space of
linear combinations of differential forms of the form ω ∧ θ, where ω ∈ Ω∗(M) and
θ ∈ Γ(E⊥).) Let dI be the image of d : I → Ω∗(M). Prove that E is involutive if
and only if dI ⊂ I.

2. Let G be a Lie group, g its Lie algebra. An inner product k on g is called
Ad-invariant if for all h ∈ G, v, w ∈ g we have k(Adg(v),Adg(w)) = k(v, w). (Equiv-
alently, k is Ad-invariant if the image of the homomorphism G→ End(g), g 7→ Adg,
lies in the orthogonal group of the inner-product space (g, k).)

(a) Let k̃ be a Riemannian metric on G. Consider the following three conditions:

(i) k̃ is left-invariant.

(ii) k̃ is right-invariant.

(iii) k := k̃e is Ad-invariant.

Show that if any two of these conditions are satisfied, then so is the third.

Remarks: (1) A tensor field onG is called bi-invariant if it is both left-invariant and
right-invariant. The most important cases are Riemannian metrics and differential
forms. (2) The conclusion of (a) remains true if “Riemannian metric” is replaced by
“tensor field”. You should be able to see this easily from your argument for part (a).

(b) Let P
π→ M be a principal G-bundle. Suppose that g has an Ad-invariant

inner product k. Show that k naturally determines an inner product on each fiber
of the associated vector bundle Ad, P , smoothly varying with the basepoint. (I.e. k
determines a Riemannian structure, in the vector-bundle sense, on AdP .)

3. Let G be a Lie group, P
π→ M be a principal G-bundle, and ρ a representation

of G on a finite-dimensional vector space V . Recall that the contragredient or dual
representation ρd of G on V ∗ is defined by setting 〈ρd(g)ξ, v〉 = 〈ξ, ρ(g−1)v〉 for all
g ∈ G, ξ ∈ V ∗, v ∈ V .

(a) For g ∈ G, the map V ∗× V ∗ → V ∗⊗ V ∗ given by (ξ, η) 7→ (ρd(g)ξ)⊗ (ρd(g)η)
is bilinear, and hence defines a linear map V ∗ ⊗ V ∗ → V ∗ ⊗ V ∗. Let (ρd ⊗ ρd)(g)
denote this map. Show that (i) ρd ⊗ ρd is a representation of G on V ∗ ⊗ V ∗, and (ii)
for all g ∈ G, k ∈ V ∗ ⊗ V ∗, and v, w ∈ V , we have(

(ρd ⊗ ρd)(g)k
)

(v, w) = k(ρ(g−1)v, ρ(g−1)w). (1)
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(b) Show that for all g ∈ G, (ρd ⊗ ρd)(g) preserves the subspace Sym2(V ∗) ⊂
V ∗ ⊗ V ∗. Hence ρd ⊗ ρd restricts to a representation of G on Sym2(V ∗), the space
of symmetric bilinear forms on V . Show that for all g ∈ G, (ρd ⊗ ρd)(g) additionally
preserves Sym2

+(V ∗) the subset of positive-definite elements of Sym2(V ∗) (the set of
inner products on V ).

We will refer to the above representation ρd⊗ρd to Sym2(V ∗) as the representation
of G on Sym2(V ∗) induced by ρ.

(c) Let E = Eρ = P ×ρ V be the vector bundle associated to P by the representa-
tion ρ. Exhibit canonical isomorphisms (i) P ×ρd V ∗ → E∗ and (ii)
P×ρd⊗ρd (Sym2(V ∗))→ Sym2(E∗). Show that the latter isomorphism carries the asso-
ciated fiber sub-bundle P ×ρd⊗ρd (Sym2

+(V ∗)) ⊂ P ×ρd⊗ρd (Sym2(V ∗)) to
Sym2

+(E∗) ⊂ Sym2(E∗), the fiber sub-bundle of Sym2(E∗) whose fiber over x ∈M is
Sym2

+(E∗x).

Remark: Hence there is a canonical 1–1 correspondence between the set of Rieman-
nian metrics (in the vector-bundle sense) on E and the set of sections of
P ×ρd⊗ρd (Sym2

+(V ∗)).

4. Riemannian submersions. Let Mm, Nn be manifolds, and π : N → M a
surjective submersion. Although (N, π,M) need not be a fiber bundle, for x ∈ M
we will still call π−1(x) the fiber over x. Recall that, by the Regular Value Theorem,
every fiber of π is a submanifold of N of dimension n−m. At every p ∈M , we define
the vertical subspace Vp ⊂ TpN to be ker(π∗p), which is easily seen also to be the
tangent space at p to the fiber containing p. A vector field V on N is called vertical
if Vp ∈ Vp for all p ∈ N .

Assume now that we are given, additionally, a Riemannian metric g̃ on N . At each
p ∈ N , we define the horizontal space Hp ⊂ TpN to be the g̃-orthogonal complement
of the vertical space Vp. In particular, we have TpN = Vp ⊕Hp, and π∗p|Hp

: Hp →
Tπ(p)M is an isomorphism (just as we have for horizontal spaces defined in the context
of principal bundles).

Assume, finally, that we are also given a Riemannian metric g on M . We call
π a Riemannian submersion (N, g̃) → (M, g) if, for all p ∈ N , the isomorphism
π∗p|Hp

: Hp → Tπ(p)M is an isometry from the inner-product space (Hp, g̃p) to the

inner-product space (Tπ(p)M, gπ(p)).
1

Henceforth assume that π is a Riemannian submersion (N, g̃)→ (M, g).

Some terminology and notation to be used below. For any vector field X
on M , we define the horizontal lift of X to be the unique vector field X̃ on N for
which X̃p ∈ Hp and π∗pX̃p = Xπ(p) for all p in N . Thus X̃ and X are π-related.

1Note that this does not say that g̃ = π∗g; the positive-semidefinite tensor field π∗g has a
(generally) nontrivial null-space at each p ∈ N , namely the vertical space Vp. (However, if π is a
covering map, then Vp = {0}, and we do have g̃ = π∗g.)
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More generally, call a (not necessarily horizontal) vector field X on N a lift of a
vector field X on M if X and X are π-related. Recall that if vector fields X,Y on N
are π-related to vector fields X, Y on M , then

π∗[X,Y ] = [X, Y ]. (2)

Note that any vertical vector field on N is a lift of the zero vector field on M . By (2),
if V is vertical and X is a lift of X, then π∗[V,X] = [0, X] = 0, so [V,X] is vertical.

Below, for any vector field X on M , we write X̃ for its horizontal lift. We will
generally use letters X, Y, Z,W for vector fields on M , but use V for vertical vector
fields on N .

For each p ∈ N , let vertp : TpN → Vp denote orthogonal projection to the vertical
space (equivalently, the projection to Vp determined by the splitting TpN = Vp⊕Hp).
Let vert denote the induced map Γ(TN) → Γ(V) := {vertical vector fields on N}.
Similarly, define the horizontal projections horp and hor.

Let ∇, ∇̃ denote the Levi-Civita connections of the metrics g, g̃ respectively.

(a) Let X, Y be vector fields on M . Show that hor([X̃, Ỹ ]) = [̃X, Y ], and hence
that

[X̃, Ỹ ] = [̃X, Y ] + vert([X̃, Ỹ ]). (3)

(b) Let X, Y be vector fields on M and let V be a vertical vector field on N . Show

that V
(
g̃(X̃, Ỹ )

)
= 0.

(c) Let X, Y be vector fields on M . Using the “six-term formula” for Levi-Civita
connections, show that

∇̃X̃ Ỹ = ∇̃XY +
1

2
vert([X̃, Ỹ ]). (4)

(d) Let X, Y be vector fields on M and let V be a vertical vector field on N . Show
that

g̃(∇̃V X̃, Ỹ ) = −1

2
g̃(vert([X̃, Ỹ ]), V ). (5)

(e) Let R̃ and R denote the Riemann tensors of g̃, g respectively. Let x ∈ M ,
p ∈ π−1(x). Let X, Y, Z,W be vector fields on M . Show that

g̃p(R̃(X̃, Ỹ )Z̃, W̃ ) = gx(R(X, Y )Z,W ) +
1

4
g̃p(vert([X̃, Z̃]), vert([Ỹ , W̃ ]))

− 1

4
g̃p(vert([Ỹ , Z̃]), vert([X̃, W̃ ])) +

1

2
g̃p(vert([Z̃, W̃ ]), vert([X̃, Ỹ ])).

(6)
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(f) For vector fields X, Y on M , let K(X, Y ) = g(R(X, Y )Y,X). (Thus if {Xx, Yx}
is an orthonormal set in TxM , then K(X, Y )|x = σ(PXx,Yx), the sectional-curvature
function of (M, g) evaluated on the two-plane PXx,Yx spanned by {Xx, Yx}.) Anal-
ogously define K(X̃, Ỹ ) = g̃(R̃(X̃, Ỹ )Ỹ , X̃). Deduce from (6) that for x ∈ M ,
p ∈ π−1(x),

K(X, Y )|x = K(X̃, Ỹ )|p +
3

4
‖vertp([X̃, Ỹ ])‖2. (7)

Thus, for any two-plane P ⊂ TxM , letting P̃ ⊂ Hp denote the horizontal lift of P (i.e.

the plane (πHp)−1(P), we have σ(P) ≥ σ(P̃). Stated loosely (and without necessary
hypotheses): sectional curvature goes up when we take a quotient.

5. Let (P, g̃), (M, g) be Riemannian manifolds. Call a map π : P → M a principal
Riemannian submersion if (i) for some Lie group G, the space P is a principal G-
bundle over M with projection π, (ii) π is a Riemannian submersion (P, g̃)→ (M, g),
and (iii) for each h ∈ G, the map Rh : (P, g̃) → (P, g̃) is an isometry. Since (Rh)∗
maps vertical spaces to vertical spaces, (iii) implies that (Rh)∗ maps also maps hori-
zontal spaces (as defined for Riemannian submersions) to horizontal spaces, and does
so isometrically. Then the distribution H defined by the horizontal spaces of the
Riemannian submersion is invariant under G, hence is a connection A on P . Call this
the “natural connection” for the principal Riemannian submersion.

Let π : (P, g̃) → (M, g) be a principal Riemannian submersion with group G, let
A be the natural connection on P , and let F̃A ∈ Ω2(P ; g) be the curvature 2-form of
A.

(a) Deduce from problem 4 that for all x ∈M, p ∈ π−1(x), we have

K(X, Y )|x = K(X̃, Ỹ )|p +
3

4
‖ιp(F̃A(X, Y ))‖2g̃. (8)

(Here ιp : g→ Vp has the same meaning as in class.) Thus the sectional curvature of
(M, g) is, loosely speaking, the sectional curvature of (P, g̃) increased by the squared
norm of the curvature of the natural connection of the principal bundle P →M .

Note that the G-invariance of the metric g̃ implies that for p, q ∈ π−1(x) we have
K(X̃, Ỹ )|p = K(X̃, Ỹ )|q. Thus the first term on the right-hand side of (8) depends
only on x, and hence so also does the second term.

(b) For each p ∈ P , define an inner product k̃p on g by k̃p = ι∗p(g̃p). Let Ad′ denote

the representation of G on Sym2(g∗) induced by the adjoint representation Ad of G
on g. Show that for all p ∈ P, h ∈ G, we have

k̃p·h = Ad′(h−1)k̃p . (9)

Hence k̃ is canonically identified with a section k of P ×Ad′ (Sym2(g∗)), positive-
definite at every point. From the Remark at the end of Problem 3, k is canonically
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identified with a Riemannian metric (in the vector-bundle sense) on AdP . (This
generalizes Problem 2b.)

(c) Let FA ∈ Ω2(M ; AdP ) be the curvature 2-form of A, viewed as a bundle-value
form on M . Let k be the Riemannian structure on AdP defined in part (b). Show
that (8) simplifies even further than in part (a), to

K(X, Y )|x = K(X̃, Ỹ )|p +
3

4
‖ FA(X, Y )|x ‖

2
k , (10)

where x = π(p). Thus the sectional curvature of (M, g) is, loosely speaking, the
“horizontal” sectional curvature of (P, g̃) increased by the (squared norm of the)
curvature of the natural connection of the principal bundle P →M (where the norm
is natural as well).

6. (Optional). Let G be a Lie group, P
π→ M be a principal G-bundle, ρ a

representation of G on a finite-dimensional vector space V , ρ̇ : g → End(V ) the
induced Lie-algebra homomorphism. Let E = P ×ρ V be vector bundle associated to
P by ρ, let A be a connection on P , and let ∇ be the induced connection on E. Let
ωA ∈ Ω1(P ; g) the connection form of A.

Let U ⊂M be open and let e = {e1, . . . , ek} be a basis of sections of E|U . Call e
ρ-admissible if there exists a basis v = {v1, . . . , vk} of V and a section s of P |U such
that for all x ∈ U , ei(x) = [(s(x), vi)], 1 ≤ i ≤ k, where [ ] is the equivalence relation
on P × V defining the space P ×ρ V . (Obviously, P |U must be trivial for s to exist,
hence for e to be ρ-admissible.)

Let U ⊂M be open; assume that e is a ρ-admissible basis of sections of E|U , and
let s,v be as in the definition of “ρ-admissible” above. Let Θ(e) ∈ Ω1(U ;Mk×k(R))
be the connection form of ∇ with respect to the local basis of sections e. Let Lv :
End(V )→ Mk×k(R) be the map carrying an endomorphism of V to its matrix with
respect to the basis v.

(a) Show that
Θ(e) = Lv ◦ ρ̇ ◦ s∗ωA . (11)

(b) Let F̃A ∈ Ω2(P ; g) be the curvature 2-form of A, let F∇ ∈ Ω2(M ; End(E))

be the curvature of ∇, and let F
(e)
∇ ∈ Ω2(U ;Mk×k(R)) be the corresponding matrix-

valued 2-form obtained by using the basis e(x) to identify an endomorphism of Ex
with a matrix (x ∈ U). Show that

F
(e)
∇ = Lv ◦ ρ̇ ◦ s∗F̃A . (12)

(c) (This can be done with or without using parts (a) and (b).) Show that ρ̇
determines a vector-bundle homomorphism ρ̇E : AdP → End(E). Letting FA ∈
Ω2(M ; AdP ) denote the curvature 2-form of A, viewed as a bundle-valued form on
M , show that

F∇ = ρ̇E ◦ FA . (13)
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