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Equivalence Relations

Often we want to express the notion that two elements of a set S are “related” in
some way. For example, if S = Z we might say that m is related to n if m < n; or we
might want to say that any two even integers are related to each other and any two odd
integers are related to each other. To define carefully just what we can mean by “related”,
without getting into semantic or philosophical difficulties, we look at the logical essence
of what’s involved in the intuitive notion of “relation”: the ability to take an ordered pair
of elements of a set, and determine whether a certain statement about that ordered pair
is true. If the given statement is true about a pair (x, y), we say that x is related to y.
We thereby obtain a set of pairs (x, y)—i.e. a subset of the Cartesian product S×S—for
which the given statement is true. This leads us to the following definition.

Definition. A relation R on a set S is a subset of S×S. We sometimes use the notation
“xRy” as short-hand for the statement “(x, y) ∈ R”. We often read the notation xRy as
“x is related to y”.

Some people prefer the term “binary relation”.
Note that any function is a relation, but not every relation is a function. For a

relation, we do not require that for all x ∈ S, there exist a y ∈ S for which x is related
to y (in fact, we do not even require a relation to be nonempty), and we allow a single
element x to be related to more than one element y.

Henceforth I’ll use a squiggle (∼) instead of an R, and write x ∼ y instead of xRy.

We define several nice properties a relation can have.

Definition. A relation ∼ on S is
(a) reflexive if x ∼ x, ∀x ∈ S,
(b) symmetric if x ∼ y implies y ∼ x,
(c) transitive if whenever x, y, z ∈ S are distinct and x ∼ y and y ∼ z, we have x ∼ z.

You can find relations that have none of these properties, or that have any combina-
tion of these properties but not remaining properties.

Examples. The relation “<” on N is transitive, but not reflexive or symmetric. The
relation “≤” on the same set is transitive and reflexive, but not symmetric. The relation
“is a first cousin of” on the set of people is symmetric but not transitive or reflexive.

The best relations are those that have all three nice properties.

Definition An equivalence relation on a set S is a relation that is reflexive, symmetric,
and transitive.

Note that since an equivalence relation is reflexive, it is automatically nonempty,
provided S is nonempty.
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Examples of equivalence relations.

1. Let S = Z. Declare x ∼ y iff x − y is divisible by 2. This equivalence relation
is called congruence modulo 2; in place of x ∼ y one usually writes x ≡ y mod 2.
Similarly we can define congruence modulo any positive integer.

2. Let S be the set of points on dry land on the earth’s surface. Declare two points
related if you can get from one to the other without crossing water. Obviously this
is an equivalence relation.

3. Let A be the collection of all sets. (Note: I am using the word “collection” here
instead of “set” because there are dangers and subtleties in talking about the “set of
all sets”, which I don’t want to get into here. But for the purposes of this handout,
“collection” means the same thing as “set.) Declare two sets X, Y related if there
exists a bijection f : X → Y . It is easy to check that this is an equivalence relation.

4. Let ∼1 be any relation on a nonempty set S. We define relations ∼2,∼3 on S as
follows. We declare x ∼2 y if either x = y, x ∼1 y, or y ∼1 x. (Thus ∼2 is reflexive
and symmetric, but it may not transitive.) We declare x ∼3 y if there exists a
finite set of elements {z1, z2, ..., zn} such that x ∼2 z1, zn ∼2 y, and zi ∼2 zi+1 for
1 ≤ i ≤ n − 1 (i.e. if there is a “chain” beginning at x, ending at y, with each
element related by ∼2 to the next one in the chain).1 Then ∼3 is an equivalence
relation, called the equivalence relation generated by the relation ∼1. Some examples
are:

(a) Let S be the set of animals. Declare two animals related if they can breed
to produce fertile offspring. The equivalence relation generated by this is (by
definition) “being in the same species”.

(b) Let S be the set of human beings. Declare two people related if they have met
each other. I’ll call the equivalence relation generated by this the “networking”
relation.

By now you will have noticed that an equivalence relation partitions a set into a
bunch of disjoint subsets, each of which consists of mutually equivalent elements. These
subsets are called equivalence classes. The precise theorem is

1The relation ∼3 can be defined more quickly, if somewhat less intuitively, without introducing ∼2 at
all: declare x ∼3 y if and only if either x = y or there exists a finite set of elements {z1, z2, ..., zn} in S,
with x = z1 and y = zn, such that zi ∼1 zi+1 or zi+1 ∼1 zi for 1 ≤ i ≤ n− 1.
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Theorem. Let ∼ be an equivalence relation on a nonempty set S. Then there exists a
unique collection C of nonempty subsets of S with the following properties.

(i) If V1, V2 ∈ C and V1 6= V2, then V1

⋂
V2 = ∅ (i.e. distinct equivalence classes are

disjoint).
(ii)

⋃
V ∈C V = S (i.e. every element of S lies in some equivalence class).

(iii) For all x, y ∈ S, there exists V ∈ C containing both x and y iff x ∼ y.

I leave the proof to you as an exercise.
Let’s re-examine the examples of equivalence relations above. In example 1, there

are exactly two equivalence classes, one consisting of the even integers, and the other the
odd integers. In example 2, the equivalence classes are the land masses such as continents
and islands. In example 3 the equivalence classes are cardinalities, extending the notion
of “number of elements in set” from finite sets to sets that may be finite or infinite. In
example 4a, of course, the equivalence classes are the species. In example 4b (variants
of which are relevant to the spread of infectious diseases), I don’t know what to call the
equivalence classes, but it’s amusing to ponder how many there have been as a function
of time. Clearly there were many equivalence classes thousands of years ago. Today there
is probably only one class, unless there are still some isolated groups somewhere in the
world as yet undiscovered by the rest of us.
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