
Notes by David Groisser, Copyright 2010First-order ODEs: Derivative form, Di�erential Form, andImpliit Solutions[These notes are under onstrution. Comments and ritiism are welome.℄IntrodutionFirst-order ODEs ome in two forms: derivative form and di�erential form. Thetwo forms are losely related, but di�er in subtle ways not addressed adequately inmost textbooks (and often overlooked entirely)1. This often leads to an unlear orinadequate de�nition of \impliit solution" to an equation in derivative form, beforedi�erential-form equations have even been introdued.The purpose of these notes is to give a de�nition of \impliit solution" that isaurate, omplete, and unambiguous. In order to make our presentation readableonurrently with a DE textbook whose topis appear in a traditional order, we de�ne\impliit solutions of a DE in derivative form" before we even introdue di�erentialform. However, one annot ahieve a omplete understanding of impliit solutionswithout investigating di�erential-form DEs in more depth than is typial for a �rstourse in DEs. Therefore, after we over di�erential-form DEs in these notes, weome bak to derivative-form equations to lean up the piture.The �rst setion below is written for mathematiians; it is intended to show whyertain de�nitions ommonly seen in textbooks are inadequate. Most students, intheir �rst di�erential equations ourse, will not be in a position to appreiate theseinadequaies. It is up to eah instrutor to deide whether, in a �rst ourse on ODEs,it is more important that a de�nition be short and (super�ially) simple than that itbe 100% aurate.1 Notes for Instrutors[This setion is not yet written℄1Atually, it is only derivative-form DEs that an be written in the \standard form" dydx =f(x; y) that are losely related to di�erential-form DEs. This is an important di�erene betweenthe two types, but there are important di�erenes even between standard-form derivative-form anddi�erential-form DES.
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2 Notes for Students2.1 Review of \derivative form" and \solution"In these notes, \di�erential equation", whih we will frequently abbreviate as \DE",always means ordinary di�erential equation, of �rst order unless otherwise spei�ed.A �rst-order equation DE in derivative form is a di�erential equation that (upto the names of the variables), using only the operations of addition and subtration,an be put in the form F(x; y; dydx) = 0; (1)where F is a funtion of three variables. Suh a DE has an independent variable (inthis ase x) and a dependent variable (in this ase y). The notation \ dydx" tells youwhih variable is whih.De�nition 2.1 For a given F, a solution of (1) on an open interval I is a real-valueddi�erentiable funtion � on I suh that when \y = �(x)" is substituted into (1), theresulting equation is a true statement for all x 2 I.2For a given F, we all a one-variable funtion � a solution of (1) (no intervalmentioned) if � is a solution of (1) on some open interval I.(In these notes, the symbol indiates the end of a de�nition, example, exerise,or theorem.)Heneforth, whenever we say \solution of a di�erential equation on an intervalI" we always mean an open interval I.3If � is a solution of a given DE (perhaps with an interval spei�ed, perhaps not)whose dependent and independent variables are y and x respetively, we allow our-selves the freedom to say that the equation \y = �(x)" is a solution of the DE. This2 Some authors refer to what we have just de�ned as an expliit solution of (1) on I . This useof \expliit" is intended to help students understand later, by way of ontrast, what an impliitsolution is. But the author of these notes feels that the terminology \expliit solution" is misleadingand potentially onfusing. So-alled \expliit solutions" an be funtions for whih it is e�etivelyimpossible to write down an expliit formula, whih is usually what one means by \expliitly-de�nedfuntion".3In order to avoid ertain distrating tehnialities, in these notes we stik to open intervals forthe allowable domains of solutions to di�erential equations in derivative form. However, often itis important to study di�erential equations on non-open intervals as well. For example, in initial-value problems in whih the independent variable is time t, we are generally interested only in whathappens in the future of the initial time t0, not in the past. In this ase, the relevant intervals are ofthe form [t0;1), [t0; t1), or [t0; t1℄, where t1 > t0. Most of the statements made in these notes aboutdi�erential equations on open intervals an be generalized to non-open intervals, but sometimes thestatements have to be worded in a more ompliated fashion. Your instrutor an tell you whihstatements generalize, and what modi�ations need to be made.2



allows us the onveniene of being able to say, for example, \y = x2 is a solution ofdydx = 2x" without having to introdue extra notation (e.g. the letter � we have beenusing) for the squaring funtion. This is an example of \permissible abuse of termi-nology". An equation and a funtion are two di�erent animals, and we should notforget the fat that, by de�nition, a solution of a DE is a one-variable funtion. Butone we understand what \solution of a DE" means, we allow ourselves the luxury ofsaying, impreisely, that \y = x2 is a solution of dydx = 2x" instead of the preise butawkward, \The funtion � de�ned by �(x) = x2 is a solution of dydx = 2x."2.2 Impliit solution of a derivative-form DEKey in understanding what \impliit solution of a di�erential equation" means isthe understanding the onept of an impliitly de�ned funtion of one variable. Youlearned about impliitly de�ned funtions as far bak as Calulus 1, when you studiedimpliit di�erentiation, but we will review the onept here. In order to make surethe onept is lear, we go into more depth than you probably did in Calulus 1 (oreven Calulus 3).Suppose we are given an algebrai (i.e. non-di�erential) equation in variables xand y. We an always write suh an equation in the formG(x; y) = 0for some two-variable funtion G. We may be interested in solving for y in terms ofx. For example, if x2 + y3 � 1 = 0 (2)then y = (1� x2)1=3: (3)In other words, if we de�ne G(x; y) = x2 + y3 � 1 and �(x) = (1 � x2)1=3, thenwhenever the pair (x; y) satis�es G(x; y) = 0, it satis�es y = �(x). Conversely, onemay verify by diret substitution that if y = (1� x2)1=3 then G(x; y) = 0. ThusG(x; y) = 0 if and only if y = �(x): (4)Note that the \if" part of this impliation is the \Conversely . . . " statement above,and an be written equivalently as the equationG(x; �(x)) = 0:More generally than this example, any time (4) is true for a two-variable fun-tion G and one-variable funtion �, we say that the equation G(x; y) = 0 impliitly3



determines (or impliitly de�nes) y as a funtion of x, and we all � the funtion ofx impliitly determined/de�ned by the equation G(x; y) = 0.Now onsider the equation x2 + y2 � 1 = 0: (5)\Solving for y in terms of x" gives the relationy = �p1� x2: (6)Looking just at (5), it is already lear that any numerial hoie of x restrits thepossible hoies of y that will make the equation a true statement. Equation (6) tellsus the only possible values for y that will work. It also tells that for �1 < x < 1there are at most two suh values; for x = 1 and for x = �1 there is at most onesuh value; and for jxj > 1 there are no values of y that will work. Conversely, if wesubstitute y = �p1� x2 into (5), we see that all the values of y that we have labeledas \possible" atually do work. Thusx2+y2�1 = 0 if and only if jxj � 1 and either y = p1� x2 or y = �p1� x2: (7)This is a muh weaker statement than a statement of the form (4), beause thesign in �p1� x2 an be hosen independently for eah x. On the domain [�1; 1℄, ifwe de�ne �1(x) = p1� x2; (8)�2(x) = �p1� x2; (9)�3(x) = � p1� x2 if x is a rational number;�p1� x2 if x is an irrational number; (10)then all three of these funtions yield true statements, for all x 2 [�1; 1℄, whensubstituted in as y in (5). In fat, sine the sign \�" an be assigned randomly foreah x 2 [�1; 1℄, there are in�nitely many funtions � that work. What distinguishes�1 and �2 from all the others is that they are ontinuous. If we restrit their domainsto the open interval (�1; 1), then they are even di�erentiable.Now onsider a more ompliated equation, suh asex + x+ 6y5 � 15y4 � 10y3 + 30y2 + 10xy2 = 0: (11)Clearly, hoosing a numerial value for x restrits the possible values for y that willmake (11) a true statement. It turns out that, depending on the hoie x, therean be anywhere from one to �ve values of y for whih the pair (x; y) satis�es (11).As in the previous example, on any x-interval I for whih there is more than one4



Figure 1: The graph of ex + x+ 6y5 � 15y4 � 10y3 + 30y2 + 10xy2 = 0:y-value that \works" for eah x, there will be in�nitely many funtions � for whihG(x; �(x)) = 0, where G(x; y) is the left-hand side of (11). However, there are notvery many ontinuous �'s that work. In this example, whatever x-interval I wehoose, there an are at most �ve ontinuous funtions � de�ned on I for whihG(x; �(x)) = 0. Writing out expliit formulas for them, analogous to the formulas for�1 and �2 in the previous example, is a hopeless task. But these ontinuous funtions� exist nonetheless. We an see this visually in Figure 1.De�nition 2.2 Let G be a funtion of two variables, � a funtion of one variable,and I an interval. We say that the equation G(x; y) = 0 impliitly determines orimpliitly de�nes the funtion �, regarded as a funtion of x (or whatever name isused for the �rst variable of G), if G(x; �(x)) = 0 for all x 2 I.Without referene to a spei� interval I, we say that the equation G(x; y) = 0impliitly determines �, regarded as a funtion of the �rst variable ofG, if the equationG(x; y) = 0 impliitly determines � (regarded as a funtion of x) on some openinterval.The same de�nitions apply if the \0" in G(x; y) = 0 is replaed by any otherreal number, or even by another funtion H(x; y) (in the latter ase, we replae\G(x; �(x)) = 0" with \G(x; �(x)) = H(x; �(x))".Graphially, a funtion � is impliitly determined by the equation G(x; y) = 0 ifthe graph of � is part of the graph of G(x; y) = 0. (For these purposes, \all of" is a5



speial ase of \part of".)There are instanes in whih we are interested in whether there is one-variablefuntion � suh that G(�(y); y) = 0. This omes up when we think of trying to solvethe equation G(x; y) = 0 for x in terms of y, rather than for y in terms of x. To handlethis ase we an give a de�nition analogous to De�nition 2.2, replaing the phrases\regarded as a funtion of x" and \�rst variable" with \regarded as a funtion y and\seond variable", and replaing \G(x; �(x)) = 0 with \G(�(y); y) = 0". To simplifywording below, any time we say an equation G(x; y) = 0 impliitly determines (orde�nes) a funtion �, we mean to regard � as a funtion of x, unless we say other-wise.Thus:� Equation (2) impliitly determines the funtion � given by the formula �(x) =(1� x2)1=3.� Equation (5) impliitly determines the funtions �1; �2; �3 de�ned in (8){(10),and in�nitely many others on the interval [�1; 1℄. The only ontinuous funtionsthat (5) determines on [�1; 1℄ are �1 and �2.� Equation (11) impliitly determines in�nitely many funtions, but only a fewontinuous funtions. In Figure 1, if we travel along the graph by startingat the upper left and moving along the urve, we enounter vertial tangentsat points A, B, C, and D (labeled in the order that we enounter them).Let xA, xB, xC , and xD denote the x oordinates of these points. Then (11)impliitly determines a ontinuous funtion of x, say �1, with domain (�1; xA℄;another ontinuous funtion of x, say �2, with domain [xB; xA℄; another, say �3,with domain [xB; xC ℄; another, say �4, with domain [xD; xC ℄; and another, say�5, with domain [xD;1℄. On the interval [�3;�2℄, the equation G(x; y) = 0determines �ve ontinuous funtions (the restritions of �1; �2; �3; �4, and �5 tothis interval). On the interval [�5;�4℄, G(x; y) = 0 determines three ontinuousfuntions (the restritions of �1; �4, and �5 to this interval).In some ases, an equation G(x; y) = 0 will impliitly determine one and onlyone funtion of x on some interval. That is a \best-ase senario". When we arein suh a ase, we an speak unambiguously of the funtion of x determined by thisequation. Often we an ahieve this result \windowing" x and y; i.e., by agreeing toonsider only pairs (x; y) where x lies in some spei� interval I and y lies in somespei� interval J . We denote the orresponding set in xy plane by I � J :I � J = f(x; y) j x 2 I and y 2 Jg:In these notes we will all suh a set a retangle, even though we do not exlude thepossibility that I and/or J extend(s) in�nitely in one diretion or both. Thus, for6



Figure 2: The graph of x2 + y2 = 1.example, we onsider the whole xy plane a retangle; the set [1;1)� (�1;1) is aretangle (onsisting of all pairs (x; y) for whih x > 1); the strip (�1;1) � (0; 1℄is a retangle (onsisting of all pairs (x; y) with 0 < y � 1). Of ourse, objets thatEulid would have alled retangles, suh as [1; 2℄ � [3:1; 4:9℄, are also retangles inour terminology. In these notes, we will be most interested in open retangles, thosewe get by taking the intervals I and J to open.When an equation G(x; y) = 0 impliitly determines more than funtion of x,\windowing" may allow us to single out one of them. For example, onsider the graphof the irle x2 + y2 = 1 (Figure 2).Let P = (x0; y0) be any point on the irle other than (1; 0) or (�1; 0); thusy0 6= 0. For any suh point, you an draw an open retangle R = I � J , ontaining(x0; y0), suh that the portion of the irle lying inR is a portion of the graph of exatlyone of the two funtions �1; �2 in (8){(9) (�1(x) = p1� x2; �2(x) = �p1� x2). Forexample, if y0 > 0 you an take J to be any open subinterval of (0;1) that ontainsy0, and then take I to be any open interval whatsoever that ontains x0. Choose somepoints on the graph in Figure 2 and draw retangles around them with the desiredproperty.Note that the loser your point (x0; y0) gets to (1; 0) or (�1; 0), the more limitedyour hoies of I and J beome, in the sense that one endpoint of I will have to bevery lose to x0, and one endpoint of J will have to be very lose to y0. For exampleif y0 = �:01 and x0 = p:9999 � :99995, then the right endpoint of I will have to liebetween p:9999 and 1, while the right endpoint of J (whih gives the loation of theupper boundary of the retangle) will have to lie between �:01 and :01. But as longas (x0; y0) 6= (�1; 0), some open retangle will work.If you take (x0; y0) = (1; 0), then this windowing proess fails in two ways tohave the desired e�et. First, for no open interval I ontaining 1 is there a funtion� de�ned on all of I suh that x2 + �(x)2 = 1 for all x 2 I, beause suh an intervalI will ontain an x that is greater than 1 (so x2 + �(x)2 > 1 no matter what you7



hoose for �(x)). Seond, for any open retangle I � J ontaining (1; 0), for values ofx very lose to but less than 1, both the point (x;p1� x2) and (x;�p1� x2) will liein I � J . Thus I � J will inlude points of the graphs of both �1 and �2, no matterhow small you take I and J .Of ourse, similar statements are true for the point (x0; y0) = (�1; 0).The Impliit Funtion Theorem gives onditions under whih the \windowingnear a point (x0; y0)" idea works very niely to guarantee that an equation suh as\G(x; y) = 0" determines at least one di�erentiable funtion of x, and, if it determinesmore than one suh funtion, to use (x0; y0) to single out one of them:Theorem 2.3 (Impliit Funtion Theorem) Let G be a two-variable funtionwhose �rst partial derivatives are ontinuous on an open retangle R = I�J . Supposethat (x0; y0) 2 R and that �G�y (x0; y0) 6= 0, where �G�y denotes the partial derivative ofG with respet to the seond variable. Let 0 = G(x0; y0).Then there exists an open subinterval I1 of I ontaining x0, an open subintervalJ1 of J ontaining y0, and a ontinuously di�erentiable funtion � de�ned on I1, suhthat for all points (x; y) 2 I1 � J1,G(x; y) = 0 if and only if y = �(x): (12)
Sine x0 lies in I1, we may look at what (12) tells us when x = x0. What thisstatement redues to when x = x0 is the following:for all y 2 J1,G(x0; y) = 0 if and only if y = �(x0):But by the de�nition of 0, we have G(x0; y0) = 0. Therefore, sine y0 2 J1, the\only if" part of the above statement tells us that y0 = �(x0). Thus, the graph of thefuntion � that the Impliit Funtion Theorem gives us will always ontain the point(x0; y0).Let us pause to appreiate how strong the onlusion of this theorem is. State-ment (12) says that for eah x 2 I1, there is one and only one value y 2 J1 forwhih G(x; y) = 0, namely the value �(x). Thus, (12) says that within I1 � J1, theequation G(x0; y0) = 0 determines y uniquely as a funtion of x. Not just uniquelyamong \nie" funtions, like ontinuous or di�erentiable funtions. Among all fun-tions with domain I1 and range ontained in J1, � is the only funtion that satis�esG(x; �(x)) = 0 identially in x. This funtion has the additional nie feature of be-ing ontinuously di�erentiable (and hene ontinuous), but there is no other funtionwhatsoever on I1 that satis�es G(x; �(x)) = 0 identially in x.8



Compare statement (12) with statement (4). The only important di�erene isthat to get the seond line of (12), we had to make the windowing restrition inthe �rst line. (The fat that we have \0" in (12) where we have \0" in (4) is anunimportant di�erene.) This is usually the best we an do; only oasionally do wehave situations in whih we an take the \window" to be the whole xy plane and stillget a unique impliitly-de�ned funtion.The uniqueness of a funtion � that is guaranteed by a statement of the form (12)allows us to use terminology that is less awkward than what we used in De�nition2.2. Spei�ally, whenever a statement of the form (12) holds true, we an dispensewith the phrase \regarded as a funtion of the �rst variable of G" in that de�nition,or even naming the funtion � at all. We may simply say the following:Within the retangle I1 � J1, the equation G(x; y) = 0 determines yuniquely as a funtion of x.Optionally, we may put the word \impliitly" in front of \determines" above. Doingso emphasizes the fat that we are not saying we know how to produe a formulathat tells us how to ompute y from x (we may or may not be able to produe suha formula, depending on the funtion G); we are simply saying that for eah x 2 I1,one and only one value of y is singled out. But an unambiguous assignment of a valuey to eah x 2 I1 is exatly what \funtion on I1" means, by de�nition. No expliitformula is required in the de�nition of \funtion".Similarly, if there exists a funtion � de�ned on J1 suh thatfor all points (x; y) 2 I1 � J1,G(x; y) = 0 if and only if x = �(y) (13)then we an say simply that within the retangle I1 � J1, the equation G(x; y) = 0determines x uniquely as a funtion of y. Thus, when ondition (13) is met, we donot have to write a whole new de�nition analogous to De�nition 2.2, with \regardedas a funtion of the �rst variable" replaed with \regarded as a funtion of the seondvariable", and with \G(x; �(x)) = 0" replaed with \G(�(y); y) = 0".When either (12) or (13) holds for some retangle I1�J1, we all � an impliitly-de�ned funtion.Exerise. Look bak at Figure 1. For whih points (x0; y0) on the graph is it not truethat there is an open retangle ontaining (x0; y0) on whih the equation in aptiondetermines y uniquely as a funtion of x? (Don't try to �nd the values of x0 and y0;just show with your penil where these \bad" points are on the graph.)Now, let us get bak to di�erential equations:9



De�nition 2.4 (temporary) We all an equation G(x; y) = 0 an impliitsolution(one word, for now) of a di�erential equationF(x; y; dydx) = 0 (14)(for a given F) if(i) the equation G(x; y) = 0 impliitly determines at least one funtion � that isa solution of (14), and(ii) every di�erentiable funtion � determined by the equation G(x; y) = 0 on anopen interval is a solution of (14).De�nition 2.5 If � is a di�erentiable funtion determined impliitly by animpliitsolution G(x; y) = 0 of (14), then we all � an impliitly-de�ned solutionof (14).Example 2.6 Consider the di�erential equationx + y dydx = 0: (15)We laim that the equation x2 + y2 � 1 = 0 (16)is an impliitsolution of (15). (Equivalently, so is the equation x2+y2 = 1.) To verifythis, we hek that riteria (i) and (ii) of De�nition 2.4 are satis�ed:� Criterion (i). Let �1(x) = p1� x2 as in (8), but restrited to the open interval(�1; 1). Note that G(x; �1(x)) = 1 for all x 2 (�1; 1), so �1 is a funtionimpliitly determined by the equation G(x; y) = 1 (the onditions of De�nition2.2) are met).We ompute �01(x) = �xp1�x2 . Thus if we substitute y = �1(x) into theleft-hand side of (15), we have x +p1� x2 �xp1� x2= 0 for all x 2 (�1; 1);so �1 is a solution of (15). Thus riterion (i) is satis�ed4.4We ould just as well have used the funtion �2 de�ned by �2(x) = � p1� x2. But to showthat riterion (i) is met it suÆes to ome up with one funtion � that works, so we hose the �that involves (slightly) less writing. 10



� Criterion (ii). Suppose � is any di�erentiable funtion determined impliitly by(16) on some open interval I. Then we havex2 + �(x)2 � 1 = 0identially in x on the interval I. Di�erentiating, we therefore have2x + 2�(x)�0(x) = 0 for all x 2 I:Therefore � is a solution of the equation2x+ 2y dydx = 0on I. Dividing by 2 we see that � is a solution of (15) on I. Therefore riterion(ii) is satis�ed.Hene (16) is an impliitsolution of (15), and the funtion �1 is an impliitly-de�nedsolution of (15).There are atually two impliitly-de�ned solutions in this example: �1 and ��1(the funtion that we alled �2 in (9)). The �rst of these is the funtion impliitlyde�ned by x2 + y2 = 1 on the retangle (�1; 1) � (0;1); the seond is the funtionimpliitly de�ned by x2 + y2 = 1 on the retangle (�1; 1)� (�1; 0). Both funtionsare solutions of (15).Example 2.7 We laim that(y � ex)(x2 + y2 � 1) = 0 (17)is not an impliitsolution of (15). To verify this laim, it suÆes to show that at leastone of riteria (i) and (ii) in De�nition 2.4 is not met. For this, we observe that ify = ex, then (17) is satis�ed. Thus, the funtion � de�ned on any open interval Iby �(x) = ex is a funtion determined impliitly by (17). However, if we substitutey = ex into (15), we get x + e2x = 0: (18)Is it possible to hoose the interval I in suh a way that (18) holds true for allx 2 I? No, for if there were suh an interval I, the left-hand side of (18) would be adi�erentiable funtion on I, so we ould di�erentiate both sides of (18) and obtain1 + 2e2x = 0: (19)11



But there isn't even a single value of x for whih this is true; 1 + 2ex > 0 for all x.Thus there is no open interval I on whih � is a solution of (15).Thus � is a di�erentiable funtion determined impliitly by (17) that is not asolution of (15). Therefore riterion (ii) in De�nition 2.4 is not met, so equation (17)is not an impliitsolution of (15). (Of ourse, the same reasoning shows that theequation y � ex = 0 is not an impliitsolution of (15).)We mention that in this example, riterion (i) is met. The same funtion � usedin Example 2.6 is a solution of (15) that is de�ned impliitly by (17).Example 2.8 The equation x2 + y2 + 1 = 0 (20)is not an impliitsolution of (15), beause it fails riterion (i) of De�nition 2.4. Thereare no real numbers x; y at all for whih (20) holds, let alone an open interval I onwhih (20) impliitly determines a funtion of x. Sine (20) determines no funtions� whatsoever on any open interval I, riterion (ii) of De�nition 2.4 is moot.Similarly, the equation x2 + y2 = 0 (21)is not an impliitsolution of (15). In this ase there is a pair of real numbers (x; y)that satis�es (21), but there is no open x-interval I on whih, for eah x 2 I, there isa real number y for whih (21) is satis�ed.Now let us make an observation about impliitsolutions:An impliitsolution of a DE is not a solution of that DE. (22)The reason is simple. A solution of a DE is a (one-variable) funtion. An impli-itsolution of a DE is a (two-variable) equation. These are two ompletely di�erentanimals.However, there is an \abuse of terminology" that we have already said is permis-sible. When a funtion � is a solution of a given di�erential equation F(x; y; dydx) = 0,we have said that we would allow ourselves to all the equation y = �(x) a solutionof that DE. We must reognize that the equation y = �(x) is not a funtion, of anynumber of variables. An equation may be used to de�ne a funtion, as in \�(x) = ex".But \�" is not the same thing as \the de�nition of �", any more than an elephant isthe same thing as the de�nition of an elephant.We allow ourselves to say, tehnially inorretly, that \y = x2 is a solutionof dydx = 2x", beause that wording is so muh less awkward than \the funtion �12



de�ned by �(x) = x2 is a solution of dydx = 2x".5 Note that the equation \y = �(x)",whih we are allowing ourselves to all a solution of a DE if � is a solution of thatDE, is equivalent to the equation \y � �(x) = 0", whih is an equation of the formG(x; y) = 0. In the same spirit, we make the following de�nition:De�nition 2.9 We say that an equation G(x; y) = 0 is an impliit solution (twowords) of a given di�erential equation if it is an impliitsolution (one word) of thatdi�erential equation, as de�ned in De�nition 2.4.Combining this de�nition with observation (22), we have a linguisti paradox:An impliit solution of a DE is not a solution of that DE.In other words, the meaning of \impliit solution" annot be obtained by interpreting\impliit" as an adjetive modifying \solution". One must regard the two-word phrase\impliit solution" as a single term, a ompound noun whose meaning annot bededued from the meanings of the two words omprising it. That is why we initiallyused the the made-up word \impliitsolution", whih the student is not likely to �ndoutside of these notes. Most textbooks give a de�nition of \impliit solution" that issimilar to our de�nition of \impliitsolution"6.Of ourse, in English there are many ompound nouns of the form \<adjetive><noun>" that do not mean \a speial type of <noun>". A prairie dog is not a typeof dog.Note that the terminology \impliitly-de�ned solution" (De�nition 2.5) does notsu�er from any paradox. An impliitly-de�ned solution of a DE is a solution of thatDE. It meets the riteria of De�nition 2.1 perfetly.Our approah to Example 2.6 above relied on our ability to produe an expliitformula for a \andidate solution" of the given DE. What if, in plae of (16), we hadbeen given an equation so ompliated that we ould not solve for y and produe5Only slightly more awkward than \y = x2 is a solution of dydx = 2x" is the following type ofphrasing that you may have seen instrutors or textbook-authors use: \The funtion �(x) = x2 is asolution of dydx = 2x." This phrasing is ertainly muh less awkward than, \The funtion � de�nedby �(x) = x2 is a solution of dydx = 2x." The reason we try not to use phrasing like \The funtion�(x) = x2 . . . " in these notes is that the funtion is �, not �(x). The objet �(x)|a number|isthe output of the funtion � when the input is alled x.However, pratially all math instrutors at least oasionally use phrasing like \The funtion�(x) = x2", and some use it all the time. The language needed to avoid suh phrasing is oftenextremely onvoluted (unless the student has been introdued to the notation \x 7! x2"). So,while this author does not like it, this type of phrasing is generally regarded as \permissible abuseof terminology". Nonetheless it is important that the student understand the di�erene betweena funtion and the output of that funtion. To help foster this understanding, we (mostly) avoidthis partiular abuse of terminology in these notes, even though we allow ertain other abuses ofterminology.6Exept that most neglet to inlude riterion (ii).13



a andidate-solution � to plug into the DE? This is where the Impliit FuntionTheorem omes to the resue.Example 2.10 7 Show that the equationx + y + exy = 1 (23)is an impliit solution of (1 + xexy)dydx + 1 + yexy = 0: (24)To show this, we start with the observation that, writingG(x; y) = x+y+exy, wehave G(0; 0) = 1. So, let us hek whether the Impliit Funtion Theorem applies tothe equation G(x; y) = 1 near the point (0; 0) (i.e. taking (x0; y0) = (0; 0) in Theorem2.3). We ompute �G�x (x; y) = 1 + yexy;�G�y (x; y) = 1 + xexy:Both of these funtions are ontinuous on the whole xy plane, and �G�y (0; 0) = 1 6= 0.Thus, the hypotheses of Theorem 2.3 are satis�ed (with R = (�1;1) � (1;1)).Therefore the onlusion of the theorem holds. We do not atually need the wholeonlusion; all we need is this part of it: there is an open interval I1 ontaining 0,and a di�erentiable funtion � de�ned on I1, suh that G(x; �(x)) = 1 for all x 2 I1.Now we use the same method by whih we heked riterion (ii) in Example 15:impliit di�erentiation (i.e. omputing derivatives of an expression that ontains animpliitly-de�ned funtion). Let us simplify the notation a little by writing y(x) =�(x). Then x+ y(x) + exy(x) = 1 for all x 2 I1;) 1 + dy(x)dx + exy(x)�y(x) + xdy(x)dx � = 0 for all x 2 I1;) (1 + xexy(x))dy(x)dx + 1 + y(x)exy(x) = 0 for all x 2 I1:Therefore � is a solution of (24). Thus, riterion (i) in De�nition 2.4 is satis�ed.The exat same impliit-di�erentiation argument shows that if  is any di�erentiable7This example is taken from Nagle, Sa�, and Snider, Fundamentals of Di�erential Equations andBoundary Value Problems, 5th ed., Pearson Addison-Wesley, 2008.14



funtion determined on an open interval by (23), then  is a solution of (24). There-fore riterion (ii) in De�nition 2.4 is also satis�ed. Hene (23) is an impliit solutionof (24).Looking bak at Example 2.6, ould we have shown that riterion (i) of De�ni-tion 2.4 is satis�ed using the tehnique of Example 2.10, using the funtion G(x; y) =x2+y2? Absolutely! For (x0; y0) we ould have taken any point of the irle x2+y2 = 1other than (�1; 0). The partial derivatives are �G�x (x; y) = 2x and �G�y (x; y) = 2y. Asin Example 2.10, the partial derivatives of G are ontinuous on whole xy plane again8,and sine we are hoosing a point (x0; y0) for whih y0 6= 0, we have �G�y (x0; y0) 6= 0.Thus, the Impliit Funtion Theorem applies, guaranteeing the existene of a di�er-entiable, impliitly-de�ned funtion �, with �(x0) = y0. We an then di�erentiateimpliitly, as we did when we heked riterion (ii) in Example 2.6 (and as we did tohek both riteria in Example 2.10), to show that � is a solution of (15). If our point(x0; y0) has y0 > 0, then the solution of (15) that we get is the funtion �1 de�ned by�1(x) = p1� x2; if y0 < 0 then the solution of (15) that we get is ��1.The student may wonder how we ould have used the method of Example 2.10had we not been lever (or luky) enough to be able to �nd a point (x0; y0) that lay onthe graph of our equation G(x; y) = a given onstant. The answer is that we ouldnot have, unless we had some other argument showing that the graph ontains atleast one point, and, more restritively, that it ontains at least one point at whih�G�y is not 0. For example, had we started with the equationx + y + exy = 2 (25)instead of (23), we would have had a muh harder time. We ould show by impliitdi�erentiation that every di�erentiable funtion determined by 25 is a solution of24|thus, that riterion (ii) of De�nition 2.4 is satis�ed|but that would not tell usthat there is even a single funtion of x de�ned by (25), or even that the graph of(25) ontains any points whatsoever. Coneivably, we ould be in the same situationas in Example 2.8, in whih all di�erentiable funtions impliitly de�ned by (20)|allnone of them|are solutions of our di�erential equation.It so happens that we an show that the graph of (25) ontains a point at whih�G�y is not 0. However, doing that would require a digression that we do not wantto take right now. Instead, let us onsider a di�erent type of problem that an behandled far more easily, even though the funtion G(x; y) is muh more ompliated.Example 2.11 Show that there is a number 0 for whih the equation8This does not always happen|Examples 2.6 and 2.10, and several other examples in these notes,just happen to have G's with this property. 15



ex + x + y5 � y4 + y3 + y2 + xy2 = 0 (26)is an impliit solution of the di�erential equationex + 1 + y2 + (5y4 � 4y3 + 3y2 + 2y + 2xy)dydx = 0: (27)To approah this problem, we start with a variation on the seond step of Ex-amples 2.6 and 2.10: we assume that there is a number 0 for whih (26) impliitlydetermines a di�erentiable funtion �, say on an interval I. On the interval I, wemay then impliitly di�erentiate the equation (26)|i.e. di�erentiate with respet tox both sides of the equation we obtain by substituting \y = �(x)" into (26). To keepthe notation as simple as possible, we will just write \y" instead of \y(x)" or \�(x)"when we di�erentiate. (This is usually what we do when we di�erentiate impliitly;we just haven't done it until now in these notes.) Then, using the hain rule andprodut rule, we �ndex + 1 + 5y4 dydx � 4y3 dydx + 3y2dydx + 2y dydx + y2 + 2xy dydx = 0;whih is equivalent to equation (27).Thus, all di�erentiable funtions � determined impliitly by an equation of theform (26) will be solutions of (27). Thus for any 0 for whih (26) impliitly determinesa di�erentiable funtion, equation (26) will be an impliit solution of (27).So, if we an show that there is suh a 0, we'll be done. For this, we look to theImpliit Funtion Theorem to help us out. Letting G(x; y) denote the left-hand sideof (26), we ompute �G�x (x; y) = ex + 1 + y2; (28)�G�y (x; y) = 5y4 � 4y3 + 3y2 + 2y + 2xy: (29)Both partials are ontinuous on the whole xy plane, so whatever point we hoose for(x0; y0), the Impliit Funtion Theorem's hypothesis that the partials be ontinuouson some open retangle ontaining (x0; y0) will be satis�ed. Let's look for a point(x0; y0) at whih �G�y is not 0. From our omputation above,�G�y (x; y) = y(5y3 � 4y2 + 3y + 2 + 2x): (30)So we de�nitely don't want to hoose y0 = 0. But if we hoose y0 to be anythingother than 0, we an ertainly �nd an x0 for whih the quantity inside parenthesesisn't zero. Let's make things easy on ourselves and hoose y0 = 1. Then16



5y30 � 4y20 + 3y0 + 2 + 2x0 = 6 + 2x06= 0 as long as x0 6= �3:So if we take, for example, (x0; y0) = (0; 1), then �G�y (x0; y0) 6= 0. For this hoieof (x0; y0), we have G(x0; y0) = 3. The Impliit Funtion Theorem then guaranteesus that on some open x-interval ontaining 0, the equation G(x; y) = 3 impliitlydetermines a di�erentiable funtion of x. By the �rst part of our analysis (the partthat involved impliit di�erentiation), this guarantees that the equation G(x; y) = 3is an impliit solution of (27). So we have found a 0 with the desired property.As you probably notied, in this example our expressions (28){(29) for the partialderivatives of G appeared also in (27). This is no aident. As students who havetaken Calulus 3 know, the multivariable hain rule implies that if we impliitlydi�erentiate the equation G(x; y) = 0 with respet to x, we obtain the equation�G�x + �G�y dydx = 0: (31)With foresight, the author hose the DE (27) to be exatly the equation (31) forG(x; y) equal to the left-hand side of (26). For most DEs, it will not be true thatthere is a value of 0 for whih (26) is an impliit solution.It may seem to you that the author heated, by hoosing essentially the only DEfor whih the fat you were instruted to establish was atually a true fat. But youwill see later that equations of the form (31) atually ome up a lot.You may also have notied, in Example 2.11, that we ould have ome up witha whole lot of points (x0; y0) that \worked", in the sense that the hypotheses of theImpliit Funtion Theorem would have been met. All we needed was a point (x0; y0)for whih y(5y3 � 4y2 + 3y + 2 + 2x)j(x0;y0) 6= 0. But \almost every" hoie (x0; y0)has this property; we just need y0 6= 0 and x0 6= � 12(5y30 � 4y20 + 3y0 + 2). For eahnonzero hoie of y0, there's only one \bad" hoie of x0; every other real number isa good hoie of x0. So the 0's for whih our method shows that (26) is an impliitsolution of (27), are all the numbers G(x0; y0) we an get by plugging in \good"hoies of (x0; y0) (i.e. all hoies with y0 6= 0 and x0 6= � 12(5y30 � 4y20 + 3y0 + 2)).We an expet this set of numbers to be a large subset of the range of G|perhapsthe whole range of G. A hallenging question for you to think about is this: are thereany numbers 0 for whih (26) is not an impliit solution of (27)? Let's strip awaythe distrating omplexity of the funtion G in (26) and pose the analogous questionfor a muh simpler G, the one in Example 2.10:Question: Are there any numbers 0 for whih the equationx + y + exy = 017



is not an impliit solution of (24)? (Note that (24) is the equation (31) for the funtionG de�ned by G(x; y) = x + y + exy.)This question will not be answered in these notes; it is left as a hallenge for thestudent. We point out that the answer to suh a question will not be the same for allfuntions G that we ould put on the left-hand side of \G(x; y) = 0". For example,if we take G(x; y) = x2 + y2, then only for 0 > 0 is the equation G(x; y) = 0 animpliit solution of (15) (whih is the equation (31) for this G, simpli�ed by dividingby 2). But if we take G(x; y) = x + y, then for every real number 0 the equationG(x; y) = 0 is an impliit solution of the analogous di�erential equation, 1 + dydx = 0,as you an see easily by expliitly solving the equation x+ y = 0 for y in terms of x.The Impliit Funtion Theorem is one of the most important theorems in alu-lus, and it is ruial to the understanding of impliit solutions of di�erential equa-tions. However, it does have its limitations: there are di�erential equations that haveimpliitly-de�ned solutions that are not funtions given by the Impliit Funtion The-orem, as the next example shows.Example 2.12 Consider the algebrai equationx2 � y2 = 0 (32)and the di�erential equation x� y dydx = 0: (33)Equation (32) is equivalent to y = �x. Thus on any interval I, equation (32) impliitlydetermines two di�erentiable funtions � of x, namely �(x) = x and �(x) = �x. Bothof these are solutions of (33). Therefore (32) is an impliit solution of (33), and thetwo funtions � above are impliitly-de�ned solutions of (33), on any interval.The point (x; y) = (0; 0) satis�es (32). But on no open retangle ontaining thepoint (0; 0) does (32) uniquely determine y as a funtion of x. Every suh retanglewill ontain both a portion of the graph of y = x and a portion of the graph of y = �x(see Figure 3; draw any retangle enlosing the origin). Thus there are no intervalsI1 ontaining 0 (our x0) and J1 ontaining 0 (our y0) for whih (12) holds.Does this ontradit the Impliit Funtion Theorem? No|the theorem says onlythat there are I1 and J1 with the property (12) if the hypotheses of the theorem are met.But in the urrent example, the funtion G for whih (32) is of the form G(x; y) = 0is given by G(x; y) = x2 � y2. Thus �G�y (x; y) = �2y, and if we take (x0; y0) = (0; 0)then �G�y (x0; y0) = 0. One of the hypotheses of the theorem is not met, and thereforewe an draw no onlusion from the theorem. The two funtions � above are perfetlygood impliitly-de�ned solutions of (33); they just are not solutions that the Impliit18



Figure 3: The graph of x2 � y2 = 0.Funtion Theorem �nds.For most two-variable funtionsG that we enounter in pratie, the \bad points"(x0; y0) at whih the Impliit Funtion Theorem does not apply are of two types:points at whih the graph of G(x; y) = G(x0; y0) has a vertial tangent (as is thease for the equations graphed in Figures 1 and 2), and points at whih two or moresmooth urves interset (as in Figure 3; in this simplest of examples the intersetingurves are straight lines).The equation x2�y2 = 0 has another feature that none of our previous exampleshave illustrated. On any open x-interval ontaining the origin, the equation impli-itly determines two di�erentiable funtions of x, but four ontinuous funtions of x:�(x) = x; �(x) = �x, �(x) = jxj, and �(x) = �jxj. In all of our previous examples,on any open interval the ontinuous impliitly-de�ned funtions and the di�erentiableimpliitly-de�ned funtions were the same.2.3 Maximal and general solutions of derivative-form DEsDe�nition 2.13 For a given F, the general solution of the di�erential equationF(x; y; dydx) = 0 on an interval I is the olletion of all solutions on I.Often we want to talk about the olletion of all solutions of a given di�erentialequation without pinning ourselves down to a spei� interval I. For example, it mayhappen we an write down a family of solutions, distinguished from eah other by thehoie of some onstant C, but for whih the domain depends on the value of C andhene di�ers from solution to solution. This suggests making the following de�nition:19



De�nition 2.14 (temporary) for a given F, the general solution of the di�erentialequation F(x; y; dydx) = 0 (34)is the olletion of all solutions of (34), where \solution" is de�ned as in the seondpart of De�nition 2.1. Said another way, the general solution of (34) is the olletionof pairs (I; �), where I is an open interval and � is a solution of (34) on I.We warn the student that the terminology \general solution" (with or withoutthe restrition \on an interval I") is not agreed upon by all mathematiians (exeptfor linear equations in \standard linear form", whih we have not yet disussed inthese notes), for reasons disussed at the end of this subsetion.The student should not overlook our areful use of the artiles \a" and \the" in\a solution" (De�nition 2.1) and \the general solution" (De�nition 2.14). Use of thede�nite artile \the" implies that we are talking about something that is unique|i.e.only one suh thing exists. \The" should never be used by a writer (or speaker)unless s/he has already given enough information for the reader (or listener) to knowthat only one exists. Di�erential equations, even on a spei�ed interval, virtuallynever have just one solution (although initial-value problems usually do). The onlything that \the solution" of a given DE an unambiguously mean is the olletionof all solutions. Thus, to the author of these notes, \the solution of equation (1)" issynonymous with \the general solution of equation (1)". To avoid misinterpretation,in these notes we will not use the terminology \the solution" (of a given DE, in theabsene of an initial ondition); we will always say either \a solution" or \the generalsolution".9There is a problem with De�nition 2.14 that we will disuss shortly. However,in their �rst exposure to the subjet, many students will not have the mathematialsophistiation needed to understand the problem or the way to �x it. Therefore in a�rst ourse on di�erential equations, it is aeptable to use De�nition 2.14as the de�nition of \general solution", and students in this author's oursewill not be penalized for doing so. Some students, however, may reognize (even-tually, if not immediately) that there is a problem. The disussion below is for thosestudents, and any others who might be interested in what the problem is. Studentswho are not interested, or have trouble understanding the disussion, mayskip to Example 2.19 and simply ignore the word \maximal" wherever itappears.To illustrate the problem, let us suppose that we are able to show for everysolution � of some di�erential equation, there is a onstant C suh that9Not all mathematiians are equally piky about terminology, and the author annot guaranteethat your instrutor will so stritly separate the meanings of \a" and \the", or will agree that theonly logially possible meaning of \the solution of a (given) DE" is the general solution of that DE.20



�(x) = 1x� C : (35)Remembering that the domain of a solution of a DE is required to be an interval,we look at equation (35) and say, \Okay, for eah C this formula gives two solutions,one on (�1; C) and (C;1)." But even this is not tehnially orret. These arenot the only two intervals on whih equation (35) de�nes solutions. If � is a solutionon (C;1), then it satis�es the DE at every point of this interval. Therefore it alsosatis�es the DE at every point of (C;C + 1), at every point of (C + 26:4; C + 93:7),and on any open subinterval of (�1; C) or (C;1) whatsoever.This example illustrates that the olletion of pairs (I; �) referred to in De�nition2.14 has a ertain redundany. There is terminology that allows us to speak morelearly about this redundany:De�nition 2.15 Let � be a funtion on an interval I and let I1 be a subinterval ofI. The restrition of � to I1, denoted �jI1, is de�ned by�jI1 (x) = �(x) for all x 2 I1 :(We leave �jI1 (x) unde�ned for x not in I1.) We say that a funtion  is a restritionof � if it is the restrition of � to some subinterval.If ~I is an interval ontaining I, and ~� is a funtion on ~I whose restrition to I is�, then we all ~� an extension of �.10Equivalently: if ~I is an interval of whih I is a subinterval, and ~� and � arefuntions de�ned on ~I and I respetively, then� is a restrition of ~� () the graph of � is part of the graph of ~�() ~� is an extension of �:(The symbol \() " means \if and only if".)It may seem silly at �rst, and even outright onfusing, to distinguish so arefullybetween a funtion and its restrition to a smaller domain, but there are many timesin mathematis in whih it is important to do this. For example, the sine funtiondoes not have an inverse, but the restrition of sine to the interval [��=2; �=2℄ does,and the inverse of this restrited funtion is the funtion we all sin�1 or arsin.If a funtion � is a solution of a given DE on some interval I then the restritionof � to any subinterval I1 is also a solution. But of ourse, if we know the funtion10The same de�nition applies even when the domains of interest are not intervals; e.g. for afuntion � with any domain whatsover, the restrition of � to any subset of its domain is de�nedthe same way. But for funtions of one variable, the DE student should remain foused on domainsthat are intervals. 21



�, then we know every spek of information about �jI1. Therein lies the redundanyof De�nition 2.14: the de�nition names a muh larger olletion of funtions than isneeded to apture all the information there is to know about solutions of (34). Wewill see below that we an be more eÆient.While we an always restrit a solution � of a given DE to a smaller intervaland obtain a (tehnially di�erent) solution, a more interesting and muh less trivialproblem is whether we an extend � to a solution on a larger interval. The extensiononept is always in the bakground whenever we talk about \the domain of a solutionof an initial-value problem". When we say these words, it's always understood thatwe're looking for the largest interval on whih the formula we're writing down isatually a solution of the given IVP. This is the di�erential-equations analog of whatis often alled the implied domain of a funtion represented by a formula, suh asf(x) = 1x , in Calulus 1 or prealulus ourses. The implied domain of this funtionf is (�1; 0) S (0;1) (also frequently written as \fx 6= 0g"). However, if we aretalking about 1x as a solution of the IVPdydx = �x�2; y(3) = 13 ; (36)then we would all \y = 1x" a solution of this IVP only on (0;1), not on the wholedomain of the formula \ 1x ".With these ideas in mind, we all a solution � of a given DE (or initial-valueproblem) on an interval I maximal or inextendible if � annot be extended to anyopen interval ~I stritly ontaining I, while still remaining a solution of the DE.Example 2.16 All the funtions � below are di�erent funtions, even though we areusing the same letter for them.� �(x) = 1x ; 0 < x < 5, is a solution of dydx = �x�2, but not a maximal solution.It is also a solution of the IVP (36).� �(x) = 1x ; 2:9 < x < 16:204, is another solution of dydx = �x�2, and of the IVP(36), but not a maximal solution.� �(x) = 1x ; 3:1 < x < 16:204, is another solution of dydx = �x�2, but it is neithera maximal solution nor a solution of the IVP (36),� �(x) = 1x ; x 2 (0;1) is a maximal solution of dydx = �x�2, and is the maximalsolution of the IVP (36).� �(x) = 1x ; x 2 (�1; 0) is a di�erent maximal solution of dydx = �x�2. It is nota solution of the IVP (36).� �(x) = 1x ; x 2 (�1;�p2) is another non-maximal solution of dydx = �x�2.22



� �(x) = 1x + 37; x 2 (0;1) is yet another maximal solution of dydx = �x�2. It isnot a solution of the IVP (36).Example 2.17 The maximal solutions of the di�erential equation dydx = se2 x are�(x) = tanx + C; (n� 12)� < x < (n+ 12)�; n an integer; C a onstant(one maximal solution for eah pair of values (n; C) with n an integer and C real).It an be shown that every non-maximal solution of a DE is the restrition of somemaximal solution of that DE.11 Thus the olletion of maximal solutions \ontains"all solutions in the sense that the graph of every solution is ontained in the graph ofsome maximal solution. So, better than De�nition 2.14 is this:De�nition 2.18 For a given F, the general solution of (1) is the olletion of allmaximal solutions of (1).(This de�nition supersedes De�nition 2.14.)Example 2.16 demonstrates, we hope, the eonomy gained by inluding the word\maximal" in this de�nition. The student will probably agree that, even prior towriting down De�nition 2.18, maximal solutions are what we really would have beenthinking of had we been asked what all the solutions of \ dydx = �x�2" are|we justmight not have realized onsiously that that's what we were thinking of.Example 2.19 The general solution of dydx = x may be written asy = 12x2 + C: (37)In this ontext equation (37) represents a one-parameter family of maximal solutions�C , eah of whih is de�ned on the whole real line. Here C is an arbitrary onstant;every real number C gives one solution of the DE. We allow ourselves to write (37) asshort-hand for \the olletion of funtions f�C j C 2 Rg, where �C(x) = 12x2 + C".Example 2.20� The general solution of dydx = �x�2; x > 0 (38)(meaning that we are interested in this di�erential equation only for x > 0) maybe written as11Said another way, every solution an be extended to at least one maximal solution. Maximalextensions always exist, but they are not always unique.23



y = 1x + C; x > 0; (39)a one-parameter family of maximal solutions. Beause the restrition x > 0 isstated expliitly in (38), it is permissible to leave out the \x > 0" when writingthe general solution; we may simply write the general solution asy = 1x + C (40)� The general solution of dydx = �x�2; (41)with no interval spei�ed, may also be written as (40)|i.e. it is permissible towrite it this way, in the interests of saving time and spae. However, beauseno interval was spei�ed when the DE was written down, we must onsider allpossible intervals. Therefore, in this ontext, equation (40) does not representa one-parameter family of maximal solutions; it represents two one-parameterfamilies of maximal solutions12. Equation (40) is aeptable short-hand forthe union of the two families of funtionsf�C j C 2 Rg; f C j C 2 Rgwhere �C(x) = 1x + C; x > 0and  C(x) = 1x + C; x < 0:
9>>>>>>>>=>>>>>>>>; (42)

(The union of the two families means the olletion of funtions that are in onefamily or the other.) The solution y = 1x +6 on fx < 0g (the funtion  6 in thenotation of (42)) is no more losely related to the solution y = 1x +6 on fx > 0g12Many alulus textbooks, and espeially integral tables, foster a misunderstanding of the in-de�nite integral. By de�nition, for funtions f that are ontinuous on an open interval or a unionof disjoint open intervals, \R f(x)dx" means \the olletion of all antiderivatives of f". If the im-plied domain of f is an open interval, then this olletion is the same as the general solution ofdy=dx = f(x). But we must be areful not to interpret formulas suh as \R x�2 dx = �x�1 + C"or \R se2 x dx = tanx + C" as saying that every antiderivative of x�2 is of the form x�1 + C onthe whole implied domain of the integrand x�2, or that every antiderivative of se2 x is of the formtanx+ C on the whole implied domain of the integrand se2 x.The Fundamental Theorem of Calulus tells us that on any open interval on whih a funtion fis ontinuous, any two antiderivatives of f di�er by an additive onstant. (Equivalently, if F is anysingle antiderivative of f on this interval, then every antiderivative of f on this interval is F+C forsome onstant C.) It does not make any statement about antiderivatives on domains that are notonneted, suh as the implied domain of f(x) = x�2 or the implied domain of f(x) = se2 x.24



(the funtion �6) than it is to the solution y = 1x + 7 on fx < 0g (the funtion 7) ; in fat it is muh less losely related. (The funtion  7 at least lies in thesame family as  6, where as �6 does not.)Alternative ways of writing the general solution of dydx = �x�2 are\fy = 1x + C; x > 0g and fy = 1x + C; x < 0g" (43)and \fy = 1x + C1; x > 0g and fy = 1x + C2; x < 0g": (44)In (43), it is understood that, within eah family, C is an arbitrary onstant, andthat the two C's have nothing to do with eah other. In (44), C1 and C2 againare arbitrary onstants, and we have simply hosen di�erent notation for themto emphasize that they have nothing to do with eah other. But all three forms(40), (43), and (44) are aeptable ways of writing the general solution, as longas we understand what they mean, and are ommuniating with someone elsewho understands what they mean. These forms do not exhaust all permissibleways of writing the general solution; there are other notational variations onthe same theme.Example 2.21 The general solution of dydx = se2 x may be written asy = tan x+ C; (45)or as y = tanx + C; (n� 12)� < x < (n+ 12)�; n an integer; (46)or as y = tan x+ Cn; (n� 12)� < x < (n + 12)�; n an integer; (47)or in various other ways that impart the same information. As in the \ dydx = �x�2"example, it is understood that C and Cn above represent arbitrary onstants (i.e.that they an assume all real values). But whihever of the forms (45){(47) (orother variations on the same theme) that we hoose for writing the general solutionof dydx = se2 x, we must not forget that eah of these forms represents an in�niteolletion of one-parameter families of maximal solutions, one family for eah intervalof the form (n� 12)� < x < (n + 12)� (n an integer).25



Example 2.22 The general solution of the separable equationdydx = �y2 (48)may be written as �y = 1x� C� and y � 0; (49)or as y = 1x� C or y = 0; (50)or in various other ways that impart the same information13. In the given ontext,the solution that is the onstant funtion 0 may be written as \y � 0" (whih, in thisontext, is read \y identially zero") or as y = 0. Sine a solution of (48), expressedin terms of the variables in (48), is funtion of x, the only orret interpretation of\y = 0" in (50) is \y is the onstant funtion whose value is zero for all x", not \yis a real number, spei�ally the number 0". An instrutor may sometimes write aonstant funtion using the identially-equal-to symbol \�", espeially in the earlyweeks of a DE ourse, to make sure that students are absolutely lear what is meant;at other times, when there is little possibility of onfusion, (s)he may just use theordinary \=" symbol.Note that for eah C, the equation \y = 1x�C " represents not one maximalsolution, but two: one on the interval (C;1) and one on the interval (�1; C).This example is very di�erent from our previous ones. For the DE \ dydx = �x�2",every maximal solution had domain either (�1; 0) or (0;1), and on eah of theseintervals there were in�nitely many maximal solutions. For the DE \ dydx = se2 x",there were in�nitely many maximal solutions on every interval of the form ((n �12)�; (n+ 12)�). By ontrast, for the di�erential equation (48):1. The domain of every maximal solution is di�erent from the domain of everyother.2. For every interval of the form (a;1) there is a maximal solution whose domainis that interval, namely y = 1x�a .3. For every interval of the form (�1; a) there is a maximal solution whose domainis that interval, namely y = 1x�a . (The formula is the same as for solution on(a;1) mentioned above, but we stress again that the fat that as solutions ofa di�erential equation, \y = 1x�a ; x > a" and \y = 1x�a ; x < a" are ompletelyunrelated to eah other.)13We do not disuss here how to �gure out the general solution of this DE, sine that is adequatelyovered outside these notes. 26



4. There is one maximal solution whose domain inludes the domain of every other,namely y � 0.The general solution of (48) also exhibits another interesting phenomenon. Theway we have written the general solution in (49) and (50) isolates the maximal solutiony � 0 as not belonging to what appears to be a single nie family into whih theother maximal solutions fall (there is no value of C for whih the formula \y = 1x�C"produes the onstant funtion 0). But for C 6= 0, writing K = 1C ,1x� C = C�1C�1x� 1 = KKx� 1 : (51)In the right-most formula in (51), we get a perfetly good funtion|the onstantfuntion 0|if we set K = 0. But this funtion is exatly what appeared to be the\exeptional" maximal solution in (49). Thus, we an rewrite the general solution(49) as �y = KKx� 1� and y = 1x : (52)Here, K is an arbitrary onstant, allowed to assume all real values, just as Cwas allowed to in (49). Writing the general solution this way, the two solutions withformula y = 1x (one for x > 0, one for x < 0) may be viewed as the exeptionalones, with all the others|inluding the onstant funtion 0|falling into the \ KKx�1"family. This illustrates that there be more than one way of expressing the olletionof all maximal solutions as what looks like a \nie family" ontaining most of themaximal solutions, plus one or more maximal solutions that don't fall into the family.But this example also provides another instane of a theme to whih we keepreturning: how easy it is to mis-identify a family of formulas with a family of solutionsof a DE. The maximal solutions desribed by fy = 1x�Cg in (49) do not form oneone-parameter family; they form two. Every value of C orresponds to two maximalsolutions, one de�ned to the left of C and one de�ned to the right14. In (52), the\family" fy = KKx�1g is even more deeptive: for eah nonzero K, the formula y =KKx�1 yields two maximal solutions, one de�ned to the left of 1=K and one de�ned tothe right, while for K = 0 the formula yields just one maximal solution.14Note to instrutors: Of ourse, the onstant solution 0 may be viewed as the \C =1" ase of\y = 1x�C ", and you may even wish to tell your students that. However, this does not mean thatthe general solution is a one-parameter family parametrized by the one-point ompati�ation of R,i.e. the irle. Suh a onlusion would be �ne if we were talking the family of rational funtionsde�ned by \y = 1x�C ", but we are not; we are talking about solutions of an ODE, for whih the onlysensible domain is a onneted one. The natural parameter-spae for the olletion of all maximalsolutions of (48) is not a irle, but a �gure-8. In our next example, a logisti equation, the naturalparameter spae is two simple losed urves joined along a ommon line segment whose endpointsorrespond to the onstant solutions. 27



In this example, one may reasonably deide that (49) is preferable to (52) as away of writing down the general solution. The onstant solution y � 0 is distinguishedfrom all the others not just by being onstant, but by being the only solution de�nedon the whole real line. Furthermore, the olletion of solutions desribed by fy =1x�Cg is more \uniform" than is the olletion desribed by fy = KKx�1g, in the sensethat in the �rst olletion, every value of the arbitrary onstant orresponds to twomaximal solutions, while in the seond olletion there is a value of the arbitraryonstant, namely 0, for whih the given formula de�nes only one maximal solution.However, in the next example, we will see two di�erent ways of writing the generalsolution, neither of whih an be preferred over the other by any suh onsiderations.Example 2.23 The general solution of the separable equationdydx = y(1� y) (53)may be written as �y = Ce�x + C� and y � 1: (54)Using the same method as in the previous example, one sees that the same olletionof funtions also be written as�y = 1Ce�x + 1� and y � 0: (55)(Here, the analog of the previous example's K has been renamed to C.) In eah ase,in the family in urly braes, the formula giving y(x) yields two maximal solutionsfor C < 0 and one maximal solution for C � 0. The C = 0 solution in (54) is theonstant funtion 0, whih is the \exeptional" solution in (55). The C = 0 solutionin (55) is the onstant funtion 1, whih is the \exeptional" solution in (54). Thesituation is ompletely symmetri; neither of (54) and (55) an be preferred over theother.The last example illustrates that for nonlinear DEs there may be no singled-outway to write the olletion of all maximal solutions (or solutions on a spei�ed inter-val) of a nonlinear equation as a one-parameter family, or as several one-parameterfamilies, or as one or more one-parameter families of solutions plus some \exeptional"solutions. Beause of this, many authors prefer to use the terminology \general solu-tion" only for linear DEs, and not to de�ne the term at all for nonlinear DEs.1515Note to instrutors: This author, however, feels that too muh is lost this way. It is importantfor students to be able to know when they've found all solutions. This author has found that manytextbooks that avoid de�ning \general solution" for nonlinear DEs do not systematially addressthe question \Have we found all solutions?" at all, or even make the importane of the question28



2.4 Algebrai equivalene of derivative-form DEsIn these notes we have de�ned open retangles. You may also be familiar with opendisks: the open disk of radius � > 0 entered at (x0; y0) is the set of points (x; y) adistane less than � from (x0; y0) (equivalently, the set of points (x; y) that satisfythe strit inequality p(x� x0)2 + (y � y0)2 < �). More generally, a subset R of R2is alled an open set if for every point (x0; y0) 2 R, the set R ontains the open diskof some radius (possibly tiny), entered at (x0; y0). If you draw yourself a pitureyou should easily be able to onvine yourself that \open disk" and \open retangle"meet the de�nition of \open set", so our terminology is self-onsistent.16Another term we will use for \open subset of R2 " is region17.De�nition 2.24 We say that two derivative-form di�erential equations, with inde-pendent variable x and dependent variable y, are algebraially equivalent on a regionR if one equation an be obtained from the other by the operations of (i) adding toboth sides of the equation an expression that is de�ned for all (x; y) 2 R 18 , and/orlear. This an reinfore the prevalent and unfortunate impression that the only thing one needsto do in DEs is push symbols around the page by whatever sets of rules one is told for the varioustypes of equations, and that one does not need to question whether and/or why those rules yield allthe solutions.This author feels that it is worthwhile to give the student a name for the olletion of all solutions,and to hoose the name that is the most onsistent with terminology that mathematiians usethroughout mathematis. By this riterion, \general solution" seems best to him.Other DE instrutors may have di�erent onventions for use of the term \general solution", but weaution the instrutor to be wary of using \general solution" to refer to a non-exhaustive olletionof solutions for whih (s)he has produed a niely-parametrized family of formulas. As the simpleexamples 2.22 and 2.23 illustrate, the hoie of whih solutions should be onsidered part of a family,and whih should be onsidered exeptional, an be in the eye of the beholder, and an be an artifatof method used to produe the solutions.We mention, however, that there is an aepted de�nition of singular solution of an ODE. Asingular solution of an ODE is one \at every point of whih the uniqueness of the solution of theCauhy problem for this equation is violated" (Enylopedia of Mathematis, online edition, Springer,http://eom.springer.de/s/s085610.htm). This de�nition provides a way to anonially separate\exeptional" solutions from the rest, and some authors have used \general solution" to refer to theolletion of all solutions that are not singular. This happens to reprodue what we have alled thegeneral solution in all the examples in these notes, for the simple reason that, like virtually everyDE shown students in a typial �rst ourse on ODEs nowadays, the DEs in our examples have nosingular solutions. But even for equations that do have singular solutions, it would seem preferableto use the term generi for the other solutions, rather than general.16For example, if R is the open disk of radius 1 entered at (0; 0), and we take (x0; y0) = (0:99; 0),then the open disk of radius 0.005 entered at (x0; y0) is ontained in R.17The author is taking some liberties here. The usual de�nition of \region" is onneted non-emptyopen subset. The author did not want to distrat the student with a de�nition of onneted, andfelt that the student would understand from ontext that when \an open set in R2" is referred toin these notes, it is understood that the set is non-empty, i.e. that it has at least one point.18Note to students: The expression is allowed to involve dydx , whih is why we did not say \funtionof x and y" here. If the expression does involve dydx , our requirement that it be de�ned for all (x; y) 229



(ii) multiplying both sides of the equation by a funtion of x and y that is de�nedand nonzero at every point of R.Note that subtration of an expression is the same as addition of the negative ofthat expression, so subtration is an operation allowed in De�nition 2.24, even thoughit is not mentioned expliitly.Example 2.25 The di�erential equationsdydx = y(1� y) (56)and 1y(1� y) dydx = 1 (57)are algebraially equivalent on the regions f(x; y) j y < 0g, f(x; y) j 0 < y < 1g,and f(x; y) j y > 1g. However, they are not algebraially equivalent on the whole xyplane.Example 2.26 The di�erential equations(y � x)dydx = 2y + 4x (58)and dydx = 2y + 4xy � x (59)are algebraially equivalent on the regions f(x; y) j y > xg and f(x; y) j y < xg, butnot on the whole xy plane.Why this terminology? Mathematiians all two equations (of any type, not justdi�erential equations) equivalent if they have the same set of solutions. For example,the equation 2x + 3 = 11 is equivalent to the equation 3x = 12. A general strategyfor solving equations is to perform a sequene of operations, eah of whih takes usfrom an equation to an equivalent but simpler equation (or to an equivalent set ofsimpler equations, suh as when we pass from \(x� 1)(x� 2) = 0" to \x� 1 = 0 orx� 2 = 0").R means that it is de�ned whenever (x; y) 2 R and any real number whatsoever is substituted fordydx .Note to instrutors: The latter requirement is more restritive than neessary|for example, iteliminates adding to both sides 1dy=dx ,q1� ( dydx)2, or an expression likeq dydx + x+ y that it is hardto imagine ever arising in any DE that anyone would ever have an interest in solving30



But often, when we manipulate equations in an attempt to �nd their solutionsets, we perform a manipulation that hanges the solution set.19 This happens, forexample, if we start with the equation x3 � 3x2 = �2x and divide by x, obtainingx2 � 3x2 = �2. In this example, we lose the solution 0. (The solution set of the �rstequation is f0; 1; 2g, while the solution set of the seond is just f1; 2g. For anotherexample, if start with the equation px + 4 = �3, and square both sides, we obtainx + 4 = 9, and hene x = 5. But 5 is not a solution of the original equation; p5 + 4is 3, not �3. Our manipulation has introdued a \spurious solution", a value of xthat is a solution of the post-manipulation equation that we may think is a solutionof the original equation, when in fat it is not.For this reason it is nie to have in our toolbox a large lass of equation-manipulation tehniques that are guaranteed to be \safe", i.e. not to hange theset of solutions. For di�erential equations, the operations allowed in the de�nition of\algebrai equivalene" above are safe. The preise statement is:If two di�erential equations are algebraially equivalent on a region R,then the set of solutions of the �rst equation whose graphs are ontainedin R, is the same as the set of solutions of the seond equation whosegraphs are ontained in R. 9>>=>>; (60)If the region R above is the whole xy plane, then the olletion of all solutionsof the �rst equation|hene its general solution|is the same as the general solutionof the seond equation. In this ase, if R = R2 is understood, we may restate(60) more briey as \Algebraially equivalent DEs have the same general solution,"\Algebraially equivalent DEs have the same set of solutions,", or \Algebraiallyequivalent DEs are equivalent." But on regions that are not all of R2, the brieferwording must be interpreted more arefully to mean statement (60).When we perform a sequene of algebrai operations in an attempt to solve adi�erential equation, espeially a nonlinear one, we are rarely luky enough to end upwith a DE that is algebraially equivalent to the original one on the whole xy plane.But usually, we maintain algebrai equivalene on regions that �ll out most of the xyplane, as in Examples 2.25 and 2.26 above.To see why statement (60) is true, let us hek that operation (ii) in De�nition2.24 does not hange the set of solutions whose graphs lie in R. Let us suppose westart with a (�rst-order) derivative-form DE of the most general possible form:F1(x; y; dydx) = F2(x; y; dydx): (61)(Of ourse, by subtrating F2(x; y; dydx) from both sides, we an put this in the simplerform F(x; y; dydx) = 0, but sine we often perform manipulations on equations without19Usually this is due to arelessness, but there are other times when we do not have muh hoie.In those ases, we try to keep trak separately of any solutions we may have lost or spuriously gainedin this step. 31



�rst putting them in the simple form (1), we will illustrate the solution-set-doesn't-hange priniple for DEs that have not been put in that form.) The equation obtainedby multiplying both sides of (61) by a funtion h that is de�ned at every point of Rand is nonzero on R ish(x; y)F1(x; y; dydx) = h(x; y)F2(x; y; dydx): (62)Suppose that � is a solution of (61). Then for all x in the domain of �,F1(x; �(x); �0(x)) = F2(x; �(x); �0(x)): (63)If the graph of � lies in R 20, then for all x in the domain of �, the point (x; �(x))lies in R, hene in the domain of h. Therefore for all x in the domain of �, h(x; �(x))is some number, and equality is maintained if we multiply both sides of (63) by thisnumber. Thereforeh(x; �(x))F1(x; �(x); �0(x)) = h(x; �(x))F2(x; �(x); �0(x)) (64)for all x in the domain of �. Hene � is a solution of (62). Thus every solution of(61) whose graph lies in R is also a solution of (62) whose graph lies in R.Conversely, suppose that � is a solution of (62) whose graph lies in R. Then (64)is satis�ed for all x in the domain of �. By hypothesis, h(x; y) 6= 0 for every point(x; y) 2 R, so for eah x in the domain of �, 1h(x;�(x)) is some number, and equalityis maintained if we multiply both sides of (64) by this number. Therefore (63) issatis�ed for all x in the domain of �, so � is a solution of (61). Thus every solutionof (62) whose graph lies in R is also a solution of (61) whose graph lies in R.This ompletes the argument that multiplying by h has not hanged the set ofsolutions whose graphs lie in R. The argument that operation (i) in De�nition 2.24does not hange this set of solutions is similar, and is left to the student.We mention that it is possible for two di�erential equations to be equivalentwithout being algebraially equivalent. Performing operations other than those inDe�nition 2.24 does not always hange the set of solutions. But beause they mighthange the set of solutions, any time we perform one of these \unsafe" operations wemust hek, by some other method, that we properly aount for any lost solutionsor spurious solutions.20In this argument we are talking about all solutions whose graphs lie in R, not just maximalsolutions whose graphs lie in R. (Students who did not read or did not understand the earliermaterial on maximal solutions should ignore the part of the previous sentene after the omma.) Ifthere is a solution ~� whose graph lies partly inside R and partly outside R, then there are x-intervalsI to whih we an restrit ~� and obtain a solution whose graph lies in R. All solutions obtained thisway are overed by our argument, as well as any maximal solutions whose graphs lie in R. (Studentswho did not read or did not understand the material on maximal solutions should replae the seondhalf of the previous sentene with \as well as any solutions whose graphs lay entirely inside R tobegin with".) 32



Students should already be familiar with this fat from their experiene with sep-arable equations. For example, in passing from equation (56) to (57), we potentiallylose any solution whose graph intersets the horizontal line fy = 0g or the horizontalline fy = 1g. Are there any suh solutions? Yes: the two onstant solutions y � 0and y � 1, whose graphs happen to be exatly these two horizontal lines.When we are dealing with separable equations dydx = g(x)p(y), and there is anynumber y0 for whih p(y0) = 0, when we separate variables we don't just potentiallylose solutions, we always lose solutions (unless we make an error later in the proess).For every number y0 for whih p(y0) = 0, the onstant funtion y = y0 is a solutionthat separation of variables, arried out with no errors, annot �nd. But fortunately,it �nds all the others (in impliit form).We an see why in the ontext of Example 2.25. The right-hand side of (56) isa funtion of y whose partial derivative with respet to y is ontinuous everywhere.Therefore for every initial-ondition point (x0; y0) in the xy plane, the fundamentalExistene and Uniqueness Theorem for initial-value problems applies, and so througheah suh point there is the graph of one and only one maximal solution. If therewere a non-onstant solution of (56) whose graph interseted the graph of the onstantsolution y � 1 (the line fy = 1g), say at the point (x0; 1), we would have a ontra-dition to uniqueness of the solution of the IVP with di�erential equation (56) andwith initial ondition y(x0) = 1. Similarly, no non-onstant solution of (56) an havea graph that intersets the graph of the onstant solution y � 0 (the line fy = 0g).Therefore the graph of every non-onstant solution lies entirely in one of the threeregions mentioned in Example 2.25. Sine equations (56) and (57) are algebraiallyequivalent on eah of these three regions, the general solution of (57) is preisely theset of all solutions of (56) other than the two onstant solutions that we have alreadyaounted for.Thus, if we manage to solve (57)|whih we leave the student to do|and thenadd to its general solution the two onstant funtions y � 0 and y � 1, we obtain allsolutions of (56).Let us now look at the algebrai-equivalene onept for some linear DEs.Example 2.27 The equations dydx + 3y = sinx (65)and e3x dydx + 3e3xy = e3x sinx (66)are algebraially equivalent on the whole xy plane. The seond equation an beobtained from the �rst by multiplying by e3x, whih is nowhere zero. Similarly, the�rst equation an be obtained from the seond by multiplying by e�3x, whih is33



nowhere zero.The student familiar with integrating-fators will reognize that the e3x in theexample above is an integrating fator for the �rst equation. To solve linear DEsby the integrating-fator method, the only funtions we ever need to multiply by arefuntions of x alone. Of ourse, every suh funtion an be viewed as a funtion ofx and y that simply happens not to depend on y. More expliitly, given a funtionone-variable funtion �, we an de�ne a two-variable funtion ~� by ~�(x; y) = �(x).If �(x) is nonzero for every x in an interval I, then ~�(x; y) is nonzero at every (x; y)in the region I �R (an vertial strip, in�nite in the �y-diretions). So we will add abit to De�nition 2.24 to have language better suited to linear equations:De�nition 2.28 We say that two linear di�erential equations, with independentvariable x and dependent variable y, are algebraially equivalent on an interval I ifthey are algebraially equivalent on the region I�R. This happens if and only if oneequation an be obtained from the other by the operations of (i) adding to both sidesof the equation a funtion of x that is de�ned at every point of the region I �R, ory times suh funtion of x, or dydx times suh a funtion of x; and/or (ii) multiplyingboth sides of the equation by a funtion of x that is de�ned and nonzero at everypoint of the interval I.Example 2.29 The equations xdydx � 2y = 0 (67)and x3 dydx � 2x2y = 0 (68)are algebraially equivalent on the interval (0;1), and also on the interval (�1; 0),but not on (�1;1) or on any other interval that inludes 0. (Thus, in aordanewith De�nition 2.24, we do not simply all them \algebraially equivalent".) The se-ond an be obtained from the �rst by multiplying by x2, whih satis�es the \nowherezero" riterion on any interval not ontaining 0, but violates it on any interval thatinludes 0.The �rst equation an be obtained from the seond by multiplying by x�2, whihis not zero anywhere, but does not yield a funtion of x on any interval that ontains0.Example 2.30 The equations 34



xdydx � 2y = 0 (69)(the same equation as (67) and x�2 dydx � 2x�3y = 0 (70)are algebraially equivalent on the interval (0;1), and also on the interval (�1; 0),but not on (�1;1) or on any other interval that inludes 0. In fat, the seondequation does not even make sense on any interval that inludes 0. The seondequation an be obtained from the �rst by multiplying by x�3, whih is not zeroanywhere, but is not de�ned at x = 0, hene does yield a funtion that we anmultiply by on any interval that inludes 0.The �rst equation an be obtained from the seond by multiplying by x3, whihis de�ned for all x, but violates the \nowhere zero" ondition on any interval thatontains 0.In the ontext of linear DEs, equation (60) redues to the following simplerstatement: Two linear DEs that are algebraially equivalenton an interval I have exatly the same solutions on I. � (71)Two linear DEs that are not algebraially equivalent on an interval I may or maynot have the same set of solutions on I. When we manipulate a linear DE in suh away that we \turn it into" an algebraially inequivalent DE, we run the risk that wewill not �nd the true set of solutions. The next example illustrates this trap.Example 2.31 Find the general solution ofxdydx � 2y = 0 (72)(the same equation as (69) and (67)).Sine this is a linear equation, our �rst step is to \put it in standard linear form"by dividing through by x. This yields the equationdydx � 2x y = 0: (73)However, (72) and (73) are not algebraially equivalent on the whole real line, butonly on (�1; 0) and (0;1). Equation (73) does not even make sense at x = 0, while
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(72) makes perfetly good sense there.21As the student may verify, equation (73) has an integrating fator �(x) = x�2.Putting our brains on auto-pilot, we multiply through by x�2, and write(x�2y)0 = 0;) Z (x�2y)0dx = Z 0 dx;) x�2y = C;) y = Cx2: (74)(Even worse than putting our brains on auto-pilot is to ignore warnings to learnthe integrating-fator method rather than to memorize a formula it leads to for thegeneral solution of a �rst-order linear DE in \most" irumstanes. That formula hasits limitations and will also lead, inorretly, to (74).)Neither in the original DE (72) nor in (74) do we see any of the lues we areused to seeing, suh as a \ 1x", that warn us that there may be a problem with (74)at x = 0. (There were lues in the intermediate steps, in whih negative powers ofx appeared, but we ignored them.) The funtions given by (74) form a 1-parameterfamily of funtions de�ned on the whole real line, and it is easy to hek that allof them are solutions of (72). We have been taught that the general solution of a�rst-order linear DE is a 1-parameter family of solutions|under ertain hypotheses.(We have ignored the fat that those hypotheses were not met, however.) Havingfound what we expeted to �nd, we write \y = Cx2" as our �nal, but wrong, answer.Let us go bak to square one and orret our work. The transition from equa-tion (72) to (73) involves dividing by x, and therefore is not valid on any intervalthat ontains 0. These two equations are algebraially equivalent on (0;1) and on(�1; 0), and therefore have the same solutions on these intervals. But the generalsolution to (72) might inlude solutions on intervals that ontain 0, while the generalsolution to (73) annot.We an still use the basi proedure that led us to (74); we just have to be moreareful with it. Auto-pilot will not work.Beause (73) makes no sense at x = 0, we must solve it separately on (�1; 0)and (0;1). We an do the work for both of these intervals simultaneously, as longas we keep trak of the fat that that's what we're doing.So suppose � is a di�erentiable funtion on either on I = (0;1) or on I =(�1; 0), and let y = �(x). On I, x�2 is an integrating fator. Multiplying both21Standard terminology related to this problem is singular point. Generally speaking, a �rst-order linear DE does not \behaves well" on an interval I if, when put in standard linear formdydx + p(x)y = g(x), there is a point x0 2 I for whih limx!x0+ p(x) = �1 or limx!x0� p(x) = �1.Suh points x0 are alled singular points of the linear DE. The point x = 0 is a singular point ofboth (72) and (73). 36



sides of our equation on I by x�2, we �nd that � is a solution of (73) if and onlyif (x�2y)0 = 0. Beause I is an interval, (x�2y)0 = 0 if and only if x�2y is onstant.Therefore:� � is a solution of (73) on (0;1) if and only if there is a onstant C for whihx�2�(x) � C; equivalently, for whih � is given by�(x) = Cx2: (75)� Exatly the same onlusion holds on the interval (�1; 0).Thus the general solution of (73) on (0;1) isy = Cx2; x > 0; (76)while the general solution of (73) on (�1; 0) isy = Cx2; x < 0: (77)Now return to the equation we originally were asked to solve, (72), and supposethat � is a solution of this equation on (�1;1). (The argument we are about togive would work on any interval ontaining 0.) Let �1 be the restrition of � to theinterval (0;1), and let �2 be the restrition of � to the interval (�1; 0). Sine (72)and (73) are algebraially equivalent on (0;1), �1 must be one of the solutions givenby (76). Thus there is some onstant C1 for whih �1(x) = C1x2. Similarly, �2 mustbe one of the solutions given by (77), so �2(x) = C2x2.Therefore �(x) = C1x2 for x > 0, and �(x) = C2x2 for x < 0. But we assumedthat � was a solution on (�1;1), so it also has a value at 0. We an dedue thisvalue by using the fat that the every solution of an ODE is ontinuous on its domain(sine, by de�nition, solutions are di�erentiable funtions, and di�erentiable funtionsare ontinuous). Therefore �(0) = limx!0 �(x). Whether we approah 0 from the left(using �(x) = C2x2) or the right (using �(x) = C1x2), we get the same limit, namely0. Hene �(0) = 0.22 Sine 0 also happens to be the value of C1x2 at x = 0 (as well asthe value of C2x2 at x = 0), we an write down a formula for � in several equivalentways, one of whih is �(x) = � C1x2 if x � 0;C2x2 if x < 0; (78)22Another way to �nd the value of �(0) in this example is as follows. Sine � is di�erentiable onits domain, the whole real line, �0(0) is some real number. Whatever this value is, when we plugx = 0 and y = �(x) into (72), the term \x dydx" beomes 0��0(0), whih is 0. Hene �(0) = y(0) = 0.While this seond method works for (72), it does not work for (68)|whih the student will laterbe asked to solve|but the �rst method we presented does.37



(We ould have hosen to absorb the \x = 0" ase into the seond line instead of the�rst, or to use both \� 0" in the top line and \� 0" in the bottom line, sine thatwould not lead to any inonsisteny. Or we ould have hosen to write a three-lineformula, with one line for x > 0, one line for x = 0, and one line for x < 0. All ofthese ways are equally valid; we just hose one of them.)Conversely, as the student may hek, every funtion of the form (78) is a solutionof (72). Therefore the general solution of (72) on (�1;1) is the two-parameter familyof funtions given by (78), with C1 and C2 arbitrary onstants23. This olletion ofsolutions ontains all the solutions on every other interval, in the sense that thegeneral solution on any interval I is obtained by restriting the funtions (78) tothe interval I. (For the student who read and understood the material on maximalsolutions: the two-parameter family (78) is the general solution of (72) as de�ned inDe�nition 2.18.)We do not want the student to ome away from the previous example with thewrong impression. For the vast majority, if not 100%, of nth-order linear DEs youare likely to enounter in your �rst ourse on DEs, you will be shown how to solvethem (or asked to solve them) only on intervals for whih the general solution is ann-parameter family of funtions. You are unlikely to see a two-parameter family offuntions as the general solution unless the equation is seond-order. Example 2.31is the exeption, not the rule. But we wanted the student to see another example ofthe perils of what an happen when algebrai equivalene is not maintained duringthe manipulation of equations.Algebraially inequivalent linear DEs do not always have di�erent solution-sets.The student should test his/her understanding of the example above by showing thatequations (67) and (68) have the same set of solutions.2.5 First-order equations in di�erential formDe�nition 2.32 A di�erential in the variables (x; y) is an expression of the formM(x; y)dx+N(x; y)dy (79)where M and N are funtions de�ned on some region in R2. We often abbreviatethis by writing (79) as just Mdx +Ndy; (80)23We warn the student that most textbooks apply the term \general solution" to the olletion ofall solutions of a linear �rst-order DE on an interval only when that olletion is a one-parameterfamily. 38



leaving it understood that M and N are funtions of x and y. Also, another termwe will use for \open subset of R2 " is region24 When a region R is spei�ed, we allMdx +Ndy a di�erential on R.The funtions M;N in (79) and (80) are alled the oeÆients of dx and dy inthese expressions.The following de�nition provides an important soure of examples of di�erentials.De�nition 2.33 (a) If F is a di�erentiable funtion on a region R, and the variableswe use for R2 are x and y, then the di�erential of F on R is the di�erential dFde�ned by dF = �F�x dx+ �F�y dy: (81)(b) A di�erential Mdx + Ndy on a region R is alled exat if there is somedi�erentiable funtion F on R for whih Mdx +Ndy = dF on R.Note that we have not yet asribed meaning to \dx" or \dy"; e�etively, theyare just plae-holders for the funtions M and N in (79) and (80). Similarly, so farthe expression \Mdx+Ndy" is just notation; its information-ontent is just the pairof funtions M;N (plus the knowledge of whih funtion is the oeÆient of dx andwhih is the oeÆient of dy).You (the student) may have ome aross the noun \di�erential" in your previousalulus ourses. The sense in whih we use this noun in these notes is more sophis-tiated than the notion you probably learned there. There is a relation between thetwo notions, but we are not ready yet to say what that relation is.If Mdx + Ndy is a di�erential on a region R, and (x0; y0) is a point in R, weall the expression M(x0; y0)dx+N(x0; y0)dy the value of the di�erentialMdx+Ndyat (x0; y0). However, this \value" is not a real number; so far it is only a piee ofnotation of the form \(real number times dx) + (real number times dy)", and we stillhave attahed no meaning to \dx" and \dy". The value of a di�erential at a pointis atually a ertain type of vetor, but not the type you learned about in Calulus3. (The type of vetor that it is will not be desribed in these notes; the neessaryonepts require a great deal of mathematial sophistiation to appreiate, and areusually not introdued at the undergraduate level.)24The author is taking some liberties here. The usual de�nition of \region" is onneted non-emptyopen subset. The author did not want to distrat the student with a de�nition of onneted, andfelt that the student would understand from ontext that when \an open set in R2" is referred toin these notes, it is understood that the set is non-empty, i.e. that it has at least one point.39



We next de�ne rules for algebrai operations involving di�erentials. These def-initions are neessary, rather than being \obvious fats", beause so far di�erentialsare just piees of notation to whih we have attahed no meaning.De�nition 2.34 Let R be an open set in R2 and let M;N;M1;M2; N1; N2, and fbe funtions de�ned on R. (Thus Mdx +Ndy;M1dx+N1dy; and M2dx +N2dy aredi�erentials on R.) Then we make the following de�nitions:1. Equality of di�erentials: M1dx + N1dy = M2dx + N2dy on R if and only ifM1(x; y) =M2(x; y) and N1(x; y) = N2(x; y) for all (x; y) 2 R.2. Abbreviation by omitting terms with oeÆient zero:Mdx = Mdx + 0dy;Ndy = 0dx+Ndy:3. Abbreviation by omitting the oeÆient 1 (the onstant funtion whose onstantvalue is the real number 1): dx = 1dx;dy = 1dy:4. Insensitivity to whih term is written �rst:Ndy +Mdx =Mdx +Ndy:5. Addition of di�erentials:(M1dx+N1dy) + (M2dx+N2dy) = (M1 +M2)dx+ (N1 +N2)dy:6. Subtration of di�erentials:(M1dx +N1dy)� (M2dx +N2dy) = (M1 �M2)dx + (N1 �N2)dy:7. Multipliation of a di�erential by a funtion:f(Mdx +Ndy) = fMdx+ fNdy:(Here, the left-hand side is read \f timesMdx+Ndy", not \f ofMdx+Ndy".The latter would make no sense, sine f is a funtion of two real variables, nota funtion of a di�erential.) 40



8. The zero di�erential on R is the di�erential 0dx+0dy, whih we often abbreviatejust as \0". (We tell from ontext whether the symbol \0" is being used todenote the real number zero, the onstant funtion whose value at every point isthe real number zero, or the zero di�erential. In the equation \0dx+ 0dy = 0",ontext tells us that eah zero on the left-hand side of the equation is to beinterpreted as the onstant funtion with onstant value 0, while the zero on theright-hand side is to be interpreted as the zero di�erential25.Note that our de�nition of subtration is the same as what we would get byombining the operations \addition" and \multipliation by the onstant funtion�1":(M1dx+N1dy)� (M2dx+N2dy) = (M1dx+N1dy) + (�1)(M2dx+N2dy):Note also that we do not de�ne the produt or quotient of two di�erentials. Inpartiular we don't (yet) attempt to relate the di�erentials dx and dy to a derivativedydx . (When we do relate them later, dydx still will not be the quotient of two di�erentials.)Finally, we are ready to bring di�erential equations bak into the piture!De�nition 2.35 A di�erential equation in di�erential form, with variables (x; y), isan equation of the formone di�erential in (x; y) = another di�erential in (x; y): (82)We write suh an equation only when where there is some region R on whih bothdi�erentials are de�ned. When the region R is spei�ed, we append \on R" to thephrase \DE in di�erential form", or insert it after \DE".Example 2.36 Whenever we separate variables in a separable, derivative-form ODE,we go through a step in whih we write down a di�erential-form ODE, suh asydy = exdx: (83)25As a general rule, it's a bad idea to use the same symbol to represent di�erent objets, andit's usually a partiularly awful idea to let the same symbol have two di�erent meanings in thesame equation. We allow ertain|very few|exeptions to this rule, in order to avoid umbersomenotation, suh as having three di�erent symbols suh \0R", \0fn," and \0di� ," fot the zero number,zero funtion, and zero di�erential respetively.
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A very important di�erene between a DE in derivative form and a DEin di�erential form is that a DE in di�erential form has no \independentvariable" or \dependent variable". The two variables are on an equal footing.We do have a \�rst variable" and \seond variable" (for whih we are using the lettersx and y, respetively, in these notes), but only beause we need to put names to our�rst and seond variables in order to speify the funtions M and N (e.g. to writea formula suh as \M(x; y) = x2y3"). Do not make the mistake of thinking thatwhenever you see \x" and \y" in a DE, x is automatially the independent variableand y the dependent variable. Also, even when it's been deided that the letters xand y will be used, there is no law that says x has to be the �rst variable and y theseond. In these notes we hoose the onventional order so that the student will feelon more familiar ground. But notie that if we were to hoose di�erent names for ourvariables, and for the sake of being ornery write something like� d� = eada;you would not have a lue as to whih variable to all the �rst|nor would it matterwhih hoie you made.Here is the di�erential-form analog of De�nition 2.24:De�nition 2.37 We say that two DEs in di�erential form are algebraially equivalenton a region R if one an be obtained from the other by the operations of (i) additionof di�erentials and/or (ii) multipliation by a funtion de�ned at every point of Rand is nowhere zero on R.So, for example, eah of the di�erential-form ODEs2x2ydx = tan(x+ y)dy;2x2ydx� tan(x + y)dy = 0;and ex(2x2ydx� tan(x+ y)dy) = 0;is algebraially equivalent to the other two on R2 (and on any region in R2). On theopen set f(x; y) j x 6= 0g these equations are also algebraially equivalent tox(2x2ydx� tan(x+ y)dy) = 0; (84)but are not algebraially equivalent to (84) on the whole plane R2, sine the planeontains points at whih x = 0. 42



Note that by subtrating the di�erential on the right-hand side of (82) from bothsides of the equation, we obtain an algebraially equivalent equation of the formMdx +Ndy = 0:Later, after we have de�ned \solution of a DE in di�erential form", we will see thatalgebraially equivalent equations have the same solutions. Therefore we lose nogenerality, in our disussion of solutions of DEs in di�erential form, if we restritattention to equations of the form (86). (However, there is one instane in whih it isonvenient to onsider di�erential-form DEs that have a nonzero term on eah side:the ase of separated variables, of whih (83) is an example.)In our disussion of derivative-form DEs, we frequently mentioned the graph ofa solution. The graph is an important urve. Its analog for di�erential-form DEs iswhat we all solution urve, and it is even more important for di�erential-form DEsthan it is for derivative-form DEs. Below, we will de�ne solution urve and solutionfor di�erential-form DEs. In reading this material the student should pay arefulattention to whether or not the word \urve" appears after \solution", sine solutionurve and solution are very di�erent gadgets, although they are related.2.5.1 Solution urves of equations in di�erential formIn Calulus 2 and 3 you learned about parametrized urves (not neessarily by thatname, however). We review the onept and some familiar terminology, and introduewhat may be some unfamiliar terminology.De�nition 2.38 A parametrized urve in R2 is an ordered pair of ontinuous real-valued funtions (f; g) de�ned on an interval (the parameter interval) I. The setf(f(t); g(t)) j t 2 Ig (85)is alled the range, trae, or image of the parametrized urve.A urve in R2 is a point-set C � R2 that is the range of some parametrizedurve26.Given a urve C, if (f; g) is a parametrized urve with trae C, then we say that(f; g) is a parametrization of C or that (f; g) parametrizes C.In other words, a urve C is a point-set that is \traed out" by the parametriequations x = f(t);y = g(t);26The \C" used in these notes for a urve is in a di�erent font from the C that we use for aonstant. 43



as t ranges over a parameter-interval; hene the terminology \trae"27. is familiarwith it from prealulus and Calulus 1. The onept is the same here: the rangeof (f; g), thought of as a single R2-valued funtion  (de�ned by (t) = (f(t); g(t)))rather than as a pair of R-valued funtions. The word image is often preferred bymathematiians, but it means the same thing as \range".Note that we are now using the letter I for a parameter-interval (\t-interval"),not an x-interval.Most of the time it is simpler to write \(x(t); y(t))" than to introdue the extraletters f; g and write \(f(t); g(t))" for the point in the xy plane de�ned by \x =f(t); y = g(t)". We will often use the simpler notation (x(t); y(t)) when there is nodanger of misinterpretation. Thus we we also sometimes write \(t) = (x(t); y(t))".Note that in De�nition 2.38, we do not require the interval I to be open. This isso that we an present ertain examples below simply, without bringing in too manyonepts at one that may be new to the student. Eventually, we will want to onsideronly parametrized urves that have an open domain-interval, but we will not imposethat requirement just yet.Example 2.39 Let x(t) = 2 os t; y(t) = 2 sin t; t 2 [0; 2�℄. Then for all t we havex(t)2+y(t)2 = 4, so the range of this parametrized urve lies along the irle x2+y2 =4. It is not hard to see that every point on the irle is in the range of this parametrizedurve, so the (just-plain, or unparametrized) urve assoiated with this parametrizedurve is the whole irle x2 + y2 = 4. Had we used the same formulas for x(t) andy(t), but restrited t to the interval [0; �℄, the range would still have lain along theirle x2 + y2 = 4, but would have been only a semiirle. Had we used the sameformulas, but used a slightly larger, open interval, say (�0:1; 2�+0:1), then we wouldhave obtained the whole irle again, with some small ars traed-out twie.Every urve has in�nitely many parametrizations. For example, \x(t) = 2 os 7t;y(t) = 2 sin 7t; t 2 [0; 2�=7℄" traes out the same urve as in �rst part of the exampleabove. So does \x(t) = 2 os t3; y(t) = 2 sin t3; t 2 [��1=3; �1=3℄".De�nition 2.40 A parametrization (x(t); y(t)); t 2 I is alled� di�erentiable if the derivatives x0(t), y0(t) exist28 for all t 2 I;27The word \trae" has several di�erent meanings in mathematis, eah of them ompletely un-related to the others. The author is using the word relutantly in these footnote not yet written28When I ontains an endpoint (i.e. I is of the form [a; b), [a; b℄, or (a; b℄, the �rst two of whihontain their left endpoints and the last two of whih ontain their right endpoints), then derivative atan endpoint that I ontains is interpreted as the appropriate one-sided derivative. Thus, if I ontainsa left endpoint a, then what we mean by \x0(a)", or \dxdt at a", is limt!a+ x(t)�x(a)t�a . Similarly if Iontains a right endpoint b, then what we mean by \x0(b)", or \dxdt at b", is limt!b� x(t)�x(b)t�b .44



� ontinuously di�erentiable if it is di�erentiable and x0(t), y0(t) are ontinuous int; and� non-stop if it is di�erentiable and x0(t) and y0(t) are never simultaneously zero(i.e. there is no t0 for whih x0(t0) = 0 = y0(t0)).
De�nition 2.41 A urve C in R2 is smooth if for every point (x0; y0) on the urve,there is a number �0 > 0 suh that for all positive � < �0, the portion of C lyinginside the open square of side-length � entered at (x0; y0) admits a ontinuouslydi�erentiable, nonstop parametrization, with domain an open interval.\Admits", as used in De�nition 2.41, is essentially another word for \has". Weuse the word \admits" beause \has" might mislead the student into thinking thatthe urve has already been dropped on his/her plate with a regular parametrization;\admits a regular parametrization" does not lend itself to this misinterpretation.The open-interval requirement at the end of De�nition 2.41 implies that if a urveontains an endpoint, then the urve does not meet our de�nition of \smooth urve".This is neessary in order to make various other de�nitions and theorems reasonablyshort; urves with endpoints are messier to handle.The student should onvine him/herself that a irle meets our de�nition of\smooth urve".Observe that De�nition (2.41) uses a \windowing" idea similar to the one thatwe used to talk about impliitly-de�ned funtions in Setion 2.2. We will later give anequivalent de�nition of \smooth urve" that is even more reminisent of that earlierdisussion.Every urve admits parametrizations that are not ontinuously di�erentiableand/or are not non-stop. Every smooth urve admits ontinuously di�erentiableparametrizations that do not meet the \non-stop" riterion, as well as those thatdo meet this riterion. But urves with orners, suh as the graph of y = jxj, admitno ontinuously di�erentiable, nonstop parametrizations. We an parametrize thegraph of y = jxj ontinuously di�erentiably|for example, by (t) = (t3; jtj3), withparameter-interval (�1;1)|but observe that for this parametrization, x0(0) = 0 =y0(0), so the parametrization is not non-stop. The orner fores us to stop in orderto instantaneously hange diretion.The graph of y = jxj is one example of a non-smooth urve. Other examples ofnon-smooth urves are:� The letter X. You an draw this without your penil leaving the paper, so itsatis�es the de�nition of \urve" (you are parametrizing it using time as the45



parameter), but you'll �nd that you need to violate the \non-stop" riterion inorder to do so.� A �gure-8. The whole urve does admit a ontinuously di�erentiable, non-stopparametrization, but the point (x0; y0) at whih the urve rosses itself ausesthe de�nition of \smooth" not to be met. For small �, the portion of the urvethat lies in the disk of radius � entered at (x0; y0) is essentially an X, and hasthe same problem that the X did.Warning about terminology. Many alulus textbooks refer to a ontinouslydi�erentiable, non-stop parametrization as a smooth parametrization. This usage of\smooth" is unfortunate. It onits with the modern meaning of \smooth fun-tion" in advaned mathematis29. A preferable one-word term is \regular", and theonly reason we are not using it in these notes is that the meaning of \regular" isnot self-evident; we did not want to present the student with extra terminology toremember. \Regular" is exible term that mathematiians use with a ontextuallyvarying meaning, whih usually is \having the most ommon features" or \havingno nasty or inonvenient features" (where the ontext determines what features areimportant). The meaning of non-stop is self-evident (regarding 0(t) = (x0(t); y0(t))as the veloity vetor v(t) at time t assoiated with the parametrization, \non-stop"is the ondition that the veloity vetor is not the zero vetor for any t), but theauthor of these notes has never seen it in any textbook30.Now we get to the heart of the matter: unlike a DE in derivative form, a DE indi�erential form is not an equation that is looking for a funtion. It is an equationthat is looking for a urve:De�nition 2.42 A solution urve of a di�erential equationM(x; y)dx+N(x; y)dy = 0 (86)29Note to instrutors: in di�erential topology and di�erential geometry, \smooth parametrization"simply means \Ck map" (from an open interval to R2, in the setting of these notes) for some pre-spei�ed k, usually 1 or1. There is no requirement that the parametrization be non-stop to be alledsmooth. Even onstant maps, whose images are a single point, are onsidered smooth parametrizedurves|and it is indispensable to the de�nition of \tangent spae" to inlude these when one talksabout the olletion of all smooth parametrized urves passing through a given point.30Note to instrutors: in di�erential topology and geometry, what we are alling here a (on-tinuously di�erentiable) non-stop parametrization is alled an immersion, so one would never see\non-stop" in a researh paper. Introdutory ourses and textbooks would be the only plaes touse this term. When teahing about urves in Calulus 3, the author of these notes uses \non-stop"as a separate ondition, rather than part of the de�nition of\smooth parametrization", beause(i) it is pedagogially useful, (ii) it is more self-explanatory than the alulus-textbook de�nitionof \smooth parametrization", whih has the awkward feature that (with this bad de�nition) allsmooth urves admit non-smooth parametrizations, (iii) the alulus-textbook de�nition of \smoothparametrization" onits with the de�nition used by mathematiians who speialize in studyingsmooth topologial or geometri objets, and (iv) the term \non-stop" presents no suh onit.46



on a region R is a smooth urve C, ontained in R, for whih some ontinuouslydi�erentiable, non-stop parametrization (t) = (x(t); y(t)) of C satis�esM(x(t); y(t))dxdt +N(x(t); y(t))dydt = 0 (87)for all t in the domain-interval I of the parametrization. In this ontext, we all  aparametrized solution of (86).31When no region R is spei�ed, it is understood that the region of interest isthe interior of the ommon implied domain of M and N . Here, \ommon implieddomain" means the set of points at whih both M and N are de�ned, and \interior"means that we don't ount points that are on the boundary of the ommon domain32.For reasons too tehnial to disuss here, we will not de�ne \maximal solutionurve" for a general di�erential-form DE. In a later setion, we will de�ne this termunder hypotheses that remove the tehnial diÆulties.As we noted previously, in a di�erential-form DE (86) there is neither an inde-pendent nor a dependent variable; x and y are treated symmetrially. This symmetryis preserved in (87), but in a surprising way: in (87), both x and y are dependentvariables! The independent variable is t|a variable that is not even visible in (86).Algebrai equivalene (see De�nition 2.37) has the same importane for DEs indi�erential form that it has for DEs in derivative form. Suppose that two equationsM1dx+N1dy = 0 and M2dx+N2dy = 0 are algebraially equivalent on a region R .Then there is a funtion f on R, nonzero at every point of R, suh that M2 = fM1and N2 = fN1. If C is a solution urve of M1dx+N1dy = 0 and (x(t); y(t)), t 2 I, isa ontinuously di�erentiable, non-stop parametrization of C, thenM2(x(t); y(t))dxdt +N2(x(t); y(t))dydt= f(x(t); y(t))�M1(x(t); y(t))dxdt +N1(x(t); y(t))dydt�= f(x(t); y(t))� 0= 0:Thus C is a solution urve of M2dx + N2dy = 0, and (x(t); y(t)) is a parametrizedsolution of this DE. Hene every solution urve of M1dx + N1dy = 0 is a solutionurve of M2dx+N2dy = 0, and the same goes for parametrized solutions.31The terminology \solution urve" and \parametrized solution" were invented for these notes;they are not standard.32Note to instrutor: The author has avoided giving a areful de�nition of \boundary" here, andtherefore of \interior", to avoid distrating the student.47



Similarly, sine f is nowhere zero on R, we have M1 = 1fM2 and N1 = 1fN2.The same argument as above, with the subsripts \1" and \2" interhanged andwith f replaed by 1f , shows that every solution urve or parametrized solution ofM2dx +N2dy = 0 is a solution urve or parametrized solution of M1dx +N1dy = 0.Thus:Two algebraially equivalent DEs in di�erential form have exatly thesame solution urves, and exatly the same parametrized solutions.Observe that ifM2 = fM1 and N2 = fN1, but f is allowed to be zero somewhereon R, then every solution urve (or parametrized solution) of M1dx + N1dy = 0 isa solution urve (or parametrized solution) of M2dx + N2dy = 0, but the reversemay not be true. (A similar statement holds for equations in derivative form.) Thus,just as for derivative form, when we algebraially manipulate di�erential-form DEs,if we multiply or divide by funtions that an be zero somewhere, we an gain orlose solutions, and therefore wind up with a set of solutions that is not the set of allsolutions of the DE we started with.De�nition 2.42 implies more about solution urves and parametrized solutionsthan is obvious just from reading the de�nition.To start with, equation (87) has a geometri interpretation. Let (x(t); y(t)) bea ontinuously di�erentiable, non-stop parametrization of some solution urve C ofMdx + Ndy = 0. Let v(t) = 0(t) = x0(t)i + y0(t)j, where i and j are the standardbasis vetors in the xy plane. Then v(t), the veloity-vetor funtion assoiated withthe parametrization, is tangent to the smooth urve C at the point (x(t); y(t)). Wean rewrite equation (87) using the dot-produt you learned in Calulus 3:(M(x(t); y(t))i+N(x(t); y(t))j) � v(t) = 0: (88)This says that, for eah t, the vetor v(t) is perpendiular to the vetorM(x(t); y(t))i+N(x(t); y(t))j. Thus for eah point (x0; y0) on C, the veloity vetor at that point (i.e.v(t0), where (x(t0); y(t0)) = (x0; y0)) is perpendiular to M(x0; y0)i+N(x0; y0)j.Suppose we have another regular parametrization of the same urve C. Tospeak learly of both parametrizations, we must temporarily abandon the notation\(x(t); y(t))" in favor of (f1(t); g1(t)) (t 2 I1) and (f2(t); g2(t)) (t 2 I2). At a givenpoint (x0; y0), the veloity vetors v1;v2 oming from the two parametrizations willbe parallel, both being nonzero vetors tangent to C at that point. (I.e. if t1; t2 aresuh that (f1(t1); g1(t1)) = (x0; y0) = (f2(t2); g2(t2)), then v2(t2) = v1(t1) for somenonzero salar .) But then(M(x0; y0)i+N(x0; y0)j) � v2(t2) = (M(x0; y0)i+N(x0; y0)j) � v1(t1)=  (M(x0; y0)i+N(x0; y0)j) � v1(t1)=  0= 0:48



Sine this holds for all points (x0; y0) on C, it follows that the parametrizationx = f2(t); y = g2(t) also satis�es (87).33 Thus if one ontinuously di�erentiable,non-stop parametrization of C satis�es (87), so does every other ontinuously dif-ferentiable, non-stop parametrization of C. Therefore, even though De�nition 2.42requires only that there be some ontinuously di�erentiable, non-stop parametriza-tion of C satisfying (87), one we know that even one ontinuously di�erentiable,non-stop parametrization of C has this property, they all do. Said another way:Every ontinuously di�erentiable, non-stop parametrization of asolution urve of a di�erential equation Mdx +Ndy = 0 is aparametrized solution of this equation: 9=; (89)This gets bak to the statement we made just prior to De�nition 2.42: that a DEin di�erential form is looking for a urve. We did not say \parametrized urve". Aurve is a geometri objet, a ertain type of point-set in the plane. The onept ofparametrized urve is needed to de�ne whih point-sets are urves and whih aren't.It's also needed to de�ne many other features or properties of a urve, suh as whethera urve is a solution urve of a (given) DE in di�erential form. Any property thatis de�ned via parametrizations (suh as being a solution urve of a DE in di�eren-tial form) an potentially hold true for one parametrization but not for another. Aproperty de�ned in terms of parametrizations is intrinsi to a (smooth) urve|thepoint-set traed out by any parametrization|if and only if the property holds truefor all ontinuously di�erentiable, non-stop parametrizations of that urve. These arethe properties that are truly geometri. What statement (89) is saying is that theproperty \I am a solution urve of this di�erential-form DE" is an intrinsi, geometriproperty.Although the onepts of \solution of a DE in derivative form" and \solutionurve of a DE in di�erential form" are fundamentally di�erent|the former is a fun-tion (of one variable); the latter is a geometri objet, a smooth urve|they are stillrelated to eah other. We will see preisely what the relation is in a later setionof these notes. For now, we mention just that the graph of any solution of a DE inderivative form is a solution urve for some DE in di�erential form. The onverseis not true, beause not every smooth urve in R2 is the graph of a funtion of onevariable (onsider the irle).Many smooth urves in R2 that are not graphs of one-variable funtions anstill be expressed entirely or \mostly" as a union of graphs of equations of the form\y = di�erentiable funtion of x." But for many smooth urves, inluding thosethat arise as solution urves of di�erential equations in di�erential form, this is often33This an also be shown using the Inverse Funtion Theorem that you may have learned inCalulus 1, plus the Chain Rule. 49



neither neessary nor desirable34. This is another fundamental di�erene betweenderivative-form DEs and di�erential-form DEs.Example 2.43 Consider the equationxdx + ydy = 0: (90)Suppose we are interested in a solution urve of this DE that passes through the point(0; 5). As the student may hek, the parametrized urvex(t) = 5 os t;y(t) = 5 sin t;t 2 [0; 2�℄, is a parametrized solution. The solution urve it parametrizes is the irlex2 + y2 = 25, whih is not the graph of a funtion of x. The irle is a beautifulsmooth urve, and as far as the DE (90) is onerned, there is no reason to exludeany point of it.But we run into trouble if we try to express this urve using graphs of di�er-entiable funtions of x alone. The irle an be expressed \mostly" as the union ofthe graphs of y = p25� x2;�5 < x < 5, and y = �p25� x2;�5 < x < 5. (Theendpoints of the x-interval [�5; 5℄ must be exluded sine ddxp25� x2 does not existat x = �5.) But we annot get the whole irle.2.5.2 The meaning of a di�erentialNow we are ready to asribe meaning to a di�erential35. However, don't worry if youdon't understand the meaning given below. Understanding it is not essential to theuse of di�erentials in di�erential equations. In fat, in this setion of the notes, thereare no di�erential equations|just di�erentials.A di�erential Mdx + Ndy is a mahine with an input and an output. What ittakes as input is a (di�erentiably) parametrized urve . What it then outputs is afuntion, de�ned on the same interval I as . If we write (t) = (x(t); y(t)), then theoutput is the funtion whose value at t 2 I is M(x(t); y(t))dxdt +N(x(t); y(t))dydt .34We emphasize that this \neither neessary nor desirable" applies only to DEs that from the startare written in di�erential form, suh as in orthogonal-trajetories problems. When di�erential-formequations are used as a tool to solve derivative-form equations, say with dependent variable y andindependent variable x, then it usually is desirable to write solutions in the expliit form \y =di�erentiable funtion of x"|and your instrutor may regard it as neessary to do this whenever itis algebraially possible.35Di�erentials an be understood at di�erent levels of loftiness. The level hosen for these notesis a higher level than the author has seen in Calulus 1-2-3 and introdutory DE textbooks, but itis not the highest level. 50



We use the language \Mdx + Ndy ats on " to refer to the fat that thedi�erential takes  as an input and then \proesses" it to produe some output.Notation we will use for the output funtion is (Mdx + Ndy)[℄. This is the samefuntion that we expressed in terms of t in the previous paragraph:the funtion obtainedwhen the di�erentialats on z }| {(Mdx +Ndy)[℄ (t)| {z }value of the funtion(Mdx+Ndy)[℄at t =M(x(t); y(t))dxdt +N(x(t); y(t))dydt : (91)
The notation on the left-hand side of (91) may look intimidating and unwieldy, butit (or something like it) is a neessary evil for this setion of the notes. It will not beused muh outside this setion.Let us make ontat between the meaning of di�erential given above, and whatthe student may have seen about di�erentials before. The easiest link is to di�eren-tials that arise as notation in the ontext of line integrals in Calulus 3. (Studentswho haven't ompleted Calulus 3 should skip down to the paragraph that inludesequation (95), read that paragraph, and skip the rest of this setion.) Reall thatone notation for the line integral of a vetor �eld M(x; y)i+N(x; y)j over a smooth,oriented urve C in the xy plane isZCM(x; y)dx+N(x; y)dy: (92)To see that the integrand in (92) is the same gadget we desribed above, let'sreview the rules you learned for omputing suh an integral:1. Choose a ontinuously di�erentiable, nonstop parametrization  of C. Writethis as (t) = (x(t); y(t)), t 2 [a; b℄.36 Depending on your teaher and textbook,you may or may not have been introdued to using a single letter, suh as  orr, for the parametrization. But almost ertainly, one ingredient of the notationyou used was \(x(t); y(t))".2. In (92), make the following substitutions: x = x(t); y = y(t); dx = dxdt dt; dy =dydt dt, and RC = R ba . The integral obtained from these substitutions is36The parametrization should also onsistent with the given orientation of C, and to be one-to-one, exept that \(a) = (b)" is allowed in order to handle losed urves. These tehnialities isunimportant here; the author is trying only to jog the student's memory, not to review line integralsthoroughly. 51



Z ba �M(x(t); y(t))dxdt +N(x(t); y(t))dydt� dt: (93)3. Compute the integral (93). The de�nition of (92) is the value of (93):ZCM(x; y)dx+N(x; y)dy = Z ba �M(x(t); y(t))dxdt +N(x(t); y(t))dydt� dt: (94)(You also learn in Calulus 3 that this de�nition is self-onsistent: no matterwhat ontinuously di�erentiable, non-stop parametrization of C you hoose37,you get the same answer.)A asual glane at (94) suggests that we have used the following misleadingequality:\M(x; y)dx +N(x; y)dy = �M(x(t); y(t))dxdt +N(x(t); y(t))dydt� dt:" (95)But that is not quite right. The left-hand side and right-hand side are not the sameobjet. Only after we are given a parametrized urve  an we produe, from theobjet on the left-hand side, the funtion of t in braes on the right-hand side.In addition, in onstruting the integral on the right-hand side of (94), we didnot on�ne our substitutions to the integrand of the integral on the left-hand side.We made the substitution \RC ! R ba " as well. Attempting to equate piees of thenotation on the left-hand side with piees of the notation on the right-hand sidehelps lead to a wrong impression of what is equal to what. Instead of making thisfallaious attempt, understand that (94) is simply a de�nition of the whole left-handside. The data on the left-hand side are reeted in the omputational presriptionon the right-hand side as follows:1. The right-hand side involves funtions x(t); y(t) on a t-interval [a; b℄. Thesetwo funtions and the interval [a; b℄ give us a parametrized urve , de�ned by(t) = (x(t); y(t)). The urve C on the left-hand side tells us whih 's areallowed: only those having trae C.2. One we hoose suh a , what is the integrand on the right-hand side? It isexatly the quantity (Mdx+Ndy)[℄(t) in (91). The e�et of the \M(x; y)dx+N(x; y)dy" on the left-hand side has been to produe the funtion (Mdx +Ndy)[℄ when fed the parametrized urve .37Subjet to the other onditions in the previous footnote52



Thus, the di�erential that appears as the integrand on the left-hand side is exatlythe mahine we desribed at the start of this setion.There is one other topi in Calulus 3 that makes referene to di�erentials (if theinstrutor hooses to disuss them at that time): the tangent-plane approximationof a funtion of two variables. The di�erentials you learned about in that ontextare not quite the same gadgets as the mahines we have de�ned. They are related,but di�erent. To demonstrate the preise relation, there are two things we wouldneed to do: (1) restrit attention to exat di�erentials, and (2) disuss what kind ofgadget the value of a di�erential at a point|an expression of the formM(x0; y0)dx+N(x0; y0)dy|is. This would require a digression that, in the interests of both brevityand omprehensibility, we omit.2.5.3 Existene/uniqueness theorem for DEs in di�erential formReall that an initial-value problem, with dependent variable y and independentvariable x, onsists of a derivative-form di�erential equation together with an initialondition of the form y(x0) = y0. The di�erential-form analog of an initial-valueproblem is a di�erential-form DE together with a point (x0; y0) of the xy plane. Theanalog of \solution of an initial value problem" is a solution urve of a di�erential-formDE that passes through the given point (x0; y0). In suh a ontext we may (loosely)refer to the point (x0; y0) as an \initial ondition" or \initial-ondition point", andto the ombination \di�erential-form DE, together with point (x0; y0)" as an \initial-value problem in di�erential form". But beause there is neither an independentvariable nor a dependent variable in a di�erential-form DE, this terminology is notas well-motivated as it is for derivative-form DEs, where the terminology stems fromthinking of the independent variable as time.Just as for derivative-form IVPs, there is an Existene and Uniqueness Theoremfor di�erential-form IVPs, whih we will state shortly. To understand what's behinda restrition that will appear in the statement of this theorem, let us look again atequation (88). Suppose (x0; y0) lies on a smooth solution urve C of Mdx+Ndy = 0.If M(x0; y0) and N(x0; y0) are not both zero, then w = M(x0; y0)i + N(x0; y0)j is anonzero vetor, and (88) tells us that the veloity vetor at (x0; y0) of any ontinuouslydi�erentiable, non-stop parametrization of C must be perpendiular to w. Hene wompletely determines the slope of the line tangent to C at (x0; y0). This plaes a verystrong restrition on possible solution urves through (x0; y0): there is one and onlyone possible value for the slope of their tangent lines.But if M(x0; y0) and N(x0; y0) are both zero, then M(x0; y0)i+N(x0; y0)j is thezero vetor, and every vetor is perpendiular to it. Said another way, if (x(t); y(t))is a parametrization of any smooth urve passing through (x0; y0), say when t = t0,then (88) is satis�ed at t = t0, and so is (87). There is no restrition at all on theslope!Therefore at suh a point (x0; y0), in general we annot expet solutions of the53



di�erential equationMdx+Ndy = 0 to be as \preditable" as they are whenM(x0; y0)and N(x0; y0) are not both zero. In this sense, the points (x0; y0) at whih M(x0; y0)and N(x0; y0) are both zero are \bad", so we give them a speial name:De�nition 2.44 A point (x0; y0) is a singular point of the di�erentialMdx+Ndy ifM(x0; y0) = 0 = N(x0; y0).Reall that a derivative-form DE, with independent variable x and dependentvariable y, is said to be in standard form if the DE is of the formdydx = f(x; y): (96)If the graph of a solution of (96) passes through (x0; y0), then the slope of the graphmust be f(x0; y0). This is true even if the IVPdydx = f(x; y); y(x0) = y0 (97)has more than one solution (whih an happen if the hypotheses of the Existene andUniqueness Theorem for derivative-form IVPs are not met, e.g. if �f�y is not ontinuousat (x0; y0)). So in some sense, a singular point (x0; y0) of a di�erentialMdx+Ndy isa worse problem for the di�erential-form IVP \Mdx+Ndy = 0 with initial ondition(x0; y0)" than we ever see for the derivative-form IVP (97).It is diÆult to de�ne \maximal solution urve" for an equationMdx+Ndy = 0on a region in whih Mdx+Ndy has a singular point. But in regions free of singularpoints, there are no tehnial diÆulties. We make the following de�nition38:De�nition 2.45 Let R be a region in whih the di�erential Mdx + Ndy has nosingular points. A solution urve C of the equation Mdx+Ndy = 0 is maximal in Rif C is ontained in R and either1. C is a losed urve (i.e. C has a ontinuously di�erentiable, non-stop paramet-rization , with domain a losed interval [a; b℄, for whih (a) = (b)), or2. C is an \open urve without endpoints" (i.e. C has a ontinuously di�erentiable,non-stop parametrization with domain an open interval,) and C is not a subsetof another solution urve in R of the same DE.38The terminology \solution urve that is maximal in a region" in De�nition 2.45 was inventedfor these notes; the author does not know whether it is standard.
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Less formally, a solution urve is maximal in R if it is inextendible to a largersolution urve in R. A smooth losed urve never has any diretions in whih itould be extended (without violating the de�nition of \smooth urve"), but an openurve without endpoints may or may not be extendible. For example, the graph C1of y = 1=x in the open �rst quadrant R is an open urve without endpoints that isinextendible beause it already \runs o� to in�nity in both diretions". It is a solutionurve of the equation ydx + xdy = 0 that is maximal in R. (This di�erential has asingular point at the origin, but the origin is not in R, so De�nition 2.45 applies.)The portion C2 of C1 for whih 1 < x < 2 is a solution urve of the same DE, but it isnot maximal in R, sine it an be extended to the larger solution urve C1 (of ourse,it an be extended to solution urves of intermediate size).We an now state the di�erential-form analog of the Existene and UniquenessTheorem for derivative-form initial-value problems:Theorem 2.46 Suppose M and N are ontinuously di�erentiable funtions on anopen region R in R2, and that Mdx + Ndy has no singular points in R. Then forevery (x0; y0) 2 R, there exists a unique maximal solution urve of Mdx +Ndy = 0passing through (x0; y0).Like the analogous theorem for derivative-form initial-value problems, this the-orem gives suÆient onditions under whih a desirable onlusion an be drawn,not neessary onditions. There are di�erential-form equations Mdx+Ndy = 0 thathave a unique maximal solution urve through a point (x0; y0) even though (x0; y0) isa singular point of the di�erential. But there are also di�erentials for whih M andN are ontinuously di�erentiable in the whole xy plane but are both zero at somepoint (x0; y0), and for whih the equation Mdx + Ndy = 0 has no solution urvethrough (x0; y0), or several maximal solution urves through (x0; y0), or in�nitelymany maximal solution urves through (x0; y0).For exat di�erentials, singular points are familiar to students who've taken Cal-ulus 3, but under another name:Example 2.47 Suppose Mdx+Ndy is exat on a region R, and let F be a funtionon R for whih Mdx + Ndy = dF . Then M = �F�x and N = �F�y . Hene (using themathematiian's notation \() "), for a given point (x0; y0) 2 R,(x0; y0) is a singular point of dF() M(x0; y0) = 0 = N(x0; y0)() �F�x (x0; y0) = 0 = �F�y (x0; y0)() (x0; y0) is a ritial point of F:Thus, the singular points of dF are exatly the ritial points of F .55



2.5.4 Solutions (as opposed to \solution urves" or \parametrized solu-tions") of DEs in di�erential formDe�nition 2.48 An equationG(x; y) = 0 (or G(x; y)= any real number 0) (98)is a solution of a di�erential-form equationM(x; y)dx+N(x; y)dy = 0 (99)on a region R if(i) the portion of the graph of (98) that lies in R ontains a smooth urve, and(ii) every smooth urve in R ontained in the graph of (98) is a solution urve of(99).If R = R2 then we usually omit mention of the region, and say just that (98) isa solution of (99).IfMdx+Ndy has no singular points in R, then a solution (98) is alled maximalin R if its graph is a solution urve of Mdx +Ndy = 0 that is maximal in R.Observe that there is a ertain strutural similarity between De�nition 2.4 andDe�nition 2.48 (\impliitsolutions", later re-named \impliit solutions" in De�nition2.5, of a derivative-form DE). In both de�nitions, the same objet|an equation of theform (98)|is being given a solution-related name (\impliit solution" in the settingof derivative-form DEs, \solution" in the setting of di�erential-form DEs). In eahde�nition there are two riteria to be met, of this form:(i) there is at one objet with a ertain property, say Property X, and(ii) every objet with Property X also has some other property relatedto another type of solution.We will elaborate on this similarity later.Example 2.49 The irle with equationx2 + y2 = 53 (100)is a solution of x dx+ y dy = 0: (101)Sine the only singular point of x dx + y dy is the origin, whih does not lie onthe graph of (100), the equation x2 + y2 = 53 is a solution of (101) that is maximalin the region fR2 minus the origing. 56



Example 2.50 The equation xy = 1is a solution of ydx+ xdy = 0: (102)The graph, a hyperbola, onsists of two maximal solution urves that are maximal inthe region fR2 minus the origing. (Just as in the previous example, the origin is theonly singular point of the di�erential.) One of the maximal solution urves admitsthe ontinuously di�erentiable, non-stop parametrization x(t) = t; y(t) = 1t ; t 2(0;1), while the other admits the ontinuously di�erentiable, non-stop parametriza-tion x(t) = t; y(t) = 1t ; t 2 (�1; 0).More generally, for every real number C, the equationxy = Cis a solution of the same DE (102). For most C, the graph is a hyperbola, but thease C = 0 is exeptional. The graph ofxy = 0 (103)is a pair of rossed lines, the x- and y-axes. Note that this graph is not a smooth urve,nor is it the disjoint union of two smooth urves the way a hyperbola is (\disjoint"meaning that the two urves have no points in ommon). We an verify that (103) isindeed a solution of (102) by observing that the parametrized urves x(t) = t; y(t) =0; t 2 R (a ontinuously di�erentiable, non-stop parametrization of the x-axis) andx(t) = 0; y(t) = t; t 2 R (a ontinuously di�erentiable, non-stop parametrization ofthe y-axis) both satisfy y(t)dxdt + x(t)dydt � 0:So we an express the graph of xy = 0 as the union of two solution urves of (102)|the graph of y = 0 and the graph of x = 0|but, unlike for the graph of xy = C, withC 6= 0 we annot do it without having the two solution urves interset. The soureof this di�erene is that only for C = 0 does the graph of xy = C ontain (0; 0), asingular point of ydx+ xdy.The next example is very general. It is key to understanding the di�erentialequations that are alled exat.
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Example 2.51 (Exat equations, part 1) Suppose Mdx + Ndy is an exat dif-ferential on a region R (see De�nition 2.33), and let F be a di�erentiable funtion onR for whih Mdx +Ndy = dF . Then (86) beomes�F�x dx + �F�y dy = 0: (104)Suppose that C is a solution urve of (104), and that g(t) = (x(t); y(t)), t 2 I, is aontinuously di�erentiable parametrization of C. Then (87) says�F�x (x(t); y(t))dxdt + �F�y (x(t); y(t))dydt = 0: (105)By the Chain Rule, the left-hand side of (105) is just ddtF (x(t); y(t)). Thus, (87)simpli�es, in this ase, to ddtF (x(t); y(t)) = 0 for all t 2 I: (106)Sine I is an interval, this implies that F (x(t); y(t)) is onstant in t. Thus, for everyparametrized solution (x(t); y(t)) of the equation dF = 0 on R, there is a (spei�,non-arbitrary) onstant 0 suh thatF (x(t); y(t)) = 0 (107)for all t 2 I: This implies that every solution urve of (104) in R is ontained in thegraph of (107) for some value of the onstant 0.Now, �x a number 0, and onsider the equationF (x; y) = 0: (108)Is this equation a solution of (104) in R, aording to De�nition 2.48? The answeris yes, provided that riterion (i) of the de�nition is met. If this riterion is met, letC be a smooth urve in R that is ontained in the graph of (108). Let  be suh aontinuously di�erentiable parametrization of C, and write (t) = (x(t); y(t)), t 2 I.Sine every point of C lies on the graph of (108), equation (107) is satis�ed for allt 2 I. Di�erentiating both sides of (107) with respet to t, we �nd that (106) issatis�ed. But, by the Chain Rule, the left-hand side of (106) is exatly the left-handside of (105), so (105) is satis�ed. Therefore C is a solution urve of (104). Heneriterion (ii) of De�nition 2.48 is met, so (108) is a solution of (104) in R.De�ning \general solution" for equations in di�erential form is trikier than itis for derivative form. One reason is that in di�erential form we have the notionsboth of solution urve|a geometri objet|and solution (in the sense of De�nition2.48)|an algebrai equation (i.e. a non-di�erential equation). The other reason is58



that for di�erential-form DEs, some of the problems aused by singular points haveno analog in derivative-form DEs. We will use the following de�nition:De�nition 2.52 39 The general solution of a di�erential-form equationMdx +Ndy = 0 (109)in a region R is the olletion of all solution urves in R.We all a olletion of algebrai equations in x and y the general solution of (109)in R (or on R), in impliit form, if(i) eah equation in the olletion is a solution in the sense of De�nition 2.48,(ii) every solution urve of (109) in R that does not pass through a singular pointof Mdx +Ndy is ontained in the graph of some equation in the olletion, and(iii) every solution urve of (109) in R, whether or not it passes through a singularpoint ofMdx+Ndy, is ontained in the union of graphs of �nitely many or ountablymany40 equations in the olletion.When no region R is mentioned expliitly, it is assumed that R is the ommon implieddomain of M and N .We will explain the reason for riterion (iii) later.Example 2.53 (Exat equations, part 2) Suppose we are given a di�erential-form equation (109) that is exat on a region R, and we have found a funtion Fsuh that Mdx + Ndy = dF on R. Then Example 2.51 shows that the generalsolution of (104) on R, in impliit form, is the olletion of equationsF (x; y) = C; (110)where C is a \semi-arbitrary" onstant: the allowed values of C are those for whihthe graph of (110) ontains a smooth urve in R.Above, if we assume more about the di�erential, it is easier to tell whih C's areallowed:39This de�nition was invented for these notes; it is not standard.40The set N of natural numbers f1; 2; 3; : : :g is an in�nite set that is alled ountable, or ountablyin�nite. More generally, the empty set and any set that an be indexed by a subset of N (forexample, a olletion of three urves C1; C2; C3, or an in�nite olletion of urves fCng1n=1) is alledountable, and we say it has ountably many elements. Every �nite set is ountable, so the phrase\�nitely many or ountably many" is redundant, but the author nonetheless wanted the student tosee \�nitely many" expliitly in De�nition 2.52. Not every in�nite set is ountable; the set of allreal numbers is an unountable set. 59



Example 2.54 (Exat equations, part 3) In the setting of Example 2.53, assumeadditionally thatM and N (=�F�x and �F�y , respetively) are ontinuously di�erentiablein R, and that Mdx + Ndy has no singular points (equivalently, F has no ritialpoints) in R. We laim that in this ase, the general solution of (104) on R, in impliitform, is (110), but where the allowed values of C are those for whih the graph of(110) ontains even a single point of R. Equivalently, the set of allowed values of Cis the range of F on the domain R.To see that this is the ase, it suÆes to show that if, for a given C, the graphof (110) ontains a point (x0; y0) of R, then the graph ontains a smooth urve in R.So, with C held �xed, assume there is suh a point (x0; y0). Sine we are assumingthat F has no ritial points in R, the point (x0; y0) is not a ritial point of F , so atleast one of the partial derivatives �F�x (x0; y0); �F�y (x0; y0) is not zero. Then:� If �F�y (x0; y0) 6= 0, then, sine we are assuming that �F�x and �F�y are ontinuous onR, we an apply the Impliit Funtion Theorem (Theorem 2.3) to dedue thatis an open retangle I1�J1 ontaining (x0; y0), and a ontinuously di�erentiablefuntion � with domain I1 suh that the portion of the graph of (108) ontainedin I1 � J1 is the graph of y = �(x), i.e. the set of points f(x; �(x)) j x 2 I1g.This same set is the trae of the parametrized urve given by� x(t) = ty(t) = �(t) � ; t 2 I1:This parametrized urve  is ontinuously di�erentiable, and it is non-stop sinedxdt = 1 for all t 2 I1. Hene the trae of  is a smooth urve ontained in thegraph of (110). Sine (x0; y0) 2 R, and R is an open set, a small enough segmentof this urve, passing through (x0; y0), will be ontained in R.� If �F�x (x0; y0) 6= 0, then (reversing the roles of x and y in the Theorem|e.g. byde�ning ~F (x; y) = F (y; x)), the Impliit Funtion Theorem tells us that there isan open retangle I1 � J1 ontaining (x0; y0), and a ontinuously di�erentiablefuntion � with domain J1 suh that the portion of the graph of (108) ontainedin I1 � J1 is the graph of x = �(y), i.e. the set of points f(�(y); y) j y 2 J1g.This graph is exatly the trae of the parametrized urve  given by� x(t) = �(t)y(t) = t � ; t 2 J1:As in the previous ase,  is ontinuously di�erentiable and non-stop. Henethe trae of  is again a smooth urve ontained in the graph of (110), andagain a small enough segment of it, passing through (x0; y0), will be ontainedin R. 60



Example 2.55 Consider again the DE from Example 2.49,xdx + ydy = 0: (111)The left-hand side is the exat di�erential dF (on the whole plane R2), whereF (x; y) = 12(x2 + y2). The funtion F has only one ritial point, (0; 0), and thefuntions M(x; y) = x and N(x; y) = y are ontinuous on the whole xy plane. So ifwe let R = fR2 minus the origing, there are no ritial points in R, and Example 2.54applies. For every C > 0, there is a point in R for whih 12(x2 + y2) = C. Thereforethe general solution of xdx + ydy = 0 in R, in impliit form, is12(x2 + y2) = C; C > 0;whih we an write more simply asx2 + y2 = C; C > 0: (112)The graph of eah solution is a irle. The olletion of these irles is what we allthe general solution of (111) in R (aording to De�nition 2.52), and the generalsolution in R �lls out the region R.If we look at (111) on the whole xy plane rather than just R, then Example 2.54no longer applies (beause of the ritial point at the origin), but Example 2.53 stillapplies. From the above, every point of the xy plane other than the origin lies ona solution urve with equation x2 + y2 = C with C > 0. For C = 0, the equation\F (x; y) = C" beomes x2 + y2 = 0. The graph of this equation is the single point(0; 0), and ontains no smooth urves. For C < 0, the graph of x2+ y2 = C is empty.Hene the general solution of (111) in impliit form, with no restrition on the region,is the same as the general solution on R in impliit form, namely (112).Example 2.56 Consider again the DE from Example 2.50,ydx+ xdy = 0: (113)The left-hand side is the exat di�erential dF (on the whole plane R2), whereF (x; y) = xy. The funtion F has only one ritial point, (0; 0), and the funtionsM(x; y) = y and N(x; y) = x are ontinuous on the whole xy plane. So, as in theprevious example if we let R = fR2 minus the origing, there are no ritial pointsin R, and Example 2.54 applies. This time, for every C 2 R there is a point in Rfor whih xy = C. Therefore the general solution of ydx+ xdy = 0 in R, in impliitform, is xy = C; (114)where C is a \true" arbitrary onstant|every real value of C is allowed.61



Note that for C 6= 0, the graph of xy = C onsists of two solution urves (thetwo halves of a hyperbola) that are maximal in R. For C = 0, there are four solutionurves that are maximal in R: the positive x-axis, the negative x-axis, the positivey-axis, and the negative y-axis. The general solution of (113) (without the words \inimpliit form") is the olletion of all these half-hyperbolas and the four open half-axes irles is what we all (111) in R (aording to De�nition 2.52). The generalsolution in R again �lls out R.If we look at (113) on the whole xy plane rather than just R, then from thepreeding, the only point we do not yet know to be on a solution urve is the origin.But, as we saw in Example 2.50, the origin is on two inextendible solution urves: thex-axis and the y-axis. So the general solution (without the words \in impliit form",and with no restrition on the region) is the set of the half-hyperbolas noted above,plus the x-axis and the y-axis. The general solution of (113) in impliit form, with norestrition on the region, is again (114). But in ontrast to Example 2.55, this timethe general solution �lls out the whole plane R2.Students who've taken Calulus 3 have studied equations taht are expliitly ofthe form \F (x; y) = C" before. For a given onstant C and funtion F , the graph ofF (x; y) = C is alled a level-set of F . (Your alulus textbook may have used theterm \level urve" for a level-set of a funtion of two variables, beause most of thetime|though not always|a non-empty level-set of a funtion of two variables is asmooth urve or a union of smooth urves.41) A level-set may have more than oneonneted omponent, suh as the graph of xy = 1: there is no way to move along theportion of this hyperbola in the �rst quadrant, and reah the portion of the hyperbolain the third quadrant. Our de�nition of \smooth urve" prevents any level-set withmore than one onneted omponent from being alled a smooth urve. However, itis often the ase that a level-set is the union of several onneted omponents, eah ofwhih is a smooth urve. From Examples 2.53 and 2.54 we an dedue the following:41Note to students. This is true provided that the seond partial derivatives of the funtion existand are ontinuous on the domain of F . The de�nition of \most of the time" is beyond the sopeof these notes. However, one instane of \most of the time" is the ase in whih there are only�nitely many C's for whih the graph of F (x; y) = C is a non-empty set that is not a union of oneor more smooth urves. For example, for the equation x2 + y2 = C, only for C = 0 is the graphboth non-empty and not a smooth urve.Note to instrutors: The \most of the time" statement is a ombination of the Regular ValueTheorem and Sard's Theorem for the ase of a C2 real-valued funtion F on a two-dimensionaldomain. The Regular Value Theorem asserts that if C is not a ritial value of F (i.e. if F�1(C)ontains no ritial points), then F�1(C) is a submanifold of the domain, whih for the dimensionsinvolved here means \empty or a union of smooth urves". Sard's Theorem asserts that the set ofritial values (not ritial points!) of F is nowhere dense.
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If F has ontinuous seond partial derivatives in the regionR, then the general solution of dF = 0 on R (see �rst sentene of De�ni-tion 2.52) is the set of smooth urves in R that are ontained inlevel-sets of F .If we additionally assume that F has no ritial pointsin R, then the general maximal solution of dF = 0 on R|i.e.the olletion of solution urves that are maximal in R|isthe olletion of onneted omponents of level-sets of F in R.(See \Some autionary notes on our terminology", item 1, later in this setion.)
9>>>>>>>>>>>>=>>>>>>>>>>>>; (115)

Neither of these statements is an \if and only if". For example, the funtionF (x; y) = xy has a ritial point at the origin, but the general solution of dF = 0 isstill the set of smooth urves inR2 that are ontained in level-sets of F . (One of thesesmooth urves is the x-axis, one is the y-axis, and the others are half-hyperbolas.)For an example of a level-set that ontains smooth urves, but is not a union ofsmooth urves (i.e. has a point that's not ontained in any of the smooth urves inthe level-set), see Example 2.59 later in this setion.The next example (in whih the DE is not exat), is inluded to illustrate aninteresting phenomenon. The student should be able to follow the author's steps, butis not expeted to understand how the author knew to take these steps.Example 2.57 Consider the DE2xy dx+ (y2 � x2)dy = 0: (116)This DE is not exat on any region in the xy plane. However, the funtionsM(x; y) =2xy and N(x; y) = y2 � x2 are ontinuously di�erentiable on the whole plane, andthe only point at whih they are both zero is (0; 0). So again, we have a dif-ferential with one singular point, whih happens to be the origin42 Again lettingR = fR2 minus the origing, Theorem 2.46 guarantees us that through eah point(x0; y0) 6= (0; 0), there exists a unique solution urve of (116). (We ould have usedthis theorem similarly in Examples 2.55 and 2.56, but there was no real need sinewe were able to solve these equations quikly, and just see diretly that every pointof R lay on a unique maximal-in-R solution urve.)Observe that the positive x-axis is a solution-urve: if we set x(t) = t; y(t) =0; t 2 (0;1), then the trae of this parametrized urve is the positive x-axis, and forall t 2 (0;1) we have2x(t)y(t) dxdt + (y(t)2 � x(t)2)dydt = 2t � 0 � 1 + (�t2) � 0 = 0:42In general, singular points an our anywhere in the xy plane. The reason that the origin isused in so many examples in these notes is to simplify the algebra, so that the student may fousmore easily on the onepts. 63



Similarly, the negative x-axis is a solution-urve. The uniqueness statement in The-orem 2.46 guarantees us that the positive and negative x-axes are the only solutionurves ontaining a point on either of these open half-axes. Therefore no other solu-tion urve in R ontains a point (x; y) for whih y = 0; every other solution urvesin R lies either entirely in the region R+ = f(x; y) j y > 0g, the half-plane abovethe x-axis, or entirely in the region R� = f(x; y) j y < 0g, the half-plane below thex-axis.On R+, and also on R�, equation (116) is algebraially equivalent to1y2 �2xy dx + (y2 � x2)dy� = 0: (117)But as the student may verify,1y2 �2xy dx+ (y2 � x2)dy� = 2xy dx + (1� x2y2 )dy= d�x2y + y�= d�x2 + y2y � :So on R+, and also on R�, the left-hand side of (117) is exat; it is dF , whereF (x; y) = x2+y2y . This di�erential has no singular points in R+ or R�, so Example2.54 applies. The general solution of (117), in impliit form, on either of these regions,is x2 + y2y = C; (118)where set of allowed values of C is the range of F on eah region. Sine the sign ofx2+y2y is the same as the sign of y, this means that on R+, only positive C's will beallowed, and on R�, only negative C's will be allowed. To see that these are the onlyrestritions on C, just set x = 0 in (117), and see that F (0; C) = C.Now for some algebrai rearrangement. Let us write C = 2b in (118). Then b isa semi-arbitrary onstant with exatly the same restritions as C (b > 0 for solutionurves in R+, b < 0 for solution urves in R�). Then on eah region,x2 + y2y = 2b() x2 + y2 = 2by() x2 + y2 � 2by = 0() x2 + y2 � 2by + b2 = b2() x2 + (y � b)2 = b2: (119)64



Figure 4: Some solution urves of 2xy dx+ (y2 � x2)dy = 0. (The graphing utility used does notdo a good job near the origin; there should be no gap in any of the irles.)The graph of (119) in R2 is a irle of radius jbj entered at (0; b) on the y-axis; thegraph in R is the irle with the origin deleted. Thus, these irles-with-origin-deletedare the solution urves of (117) on R+ and on R�. But sine (117) is algebraiallyequivalent to (116) on these regions, the same urves are all the solution urves of(116) in these regions.We have now found all the solution urves of (116) in R that do not interset thex-axis, as well as all those that do interset it. So we have all the solution urves inR = fR2 minus the origing. If we now re-inlude the origin, we see that the origin lieson every one of the irles (119), as well as on the x-axis. With the origin re-inluded,it is easy to see that the full x-axis is a solution urve of (116). We leave the studentto hek that eah full irle (119), with the origin inluded, is also a solution urveof (116).So it appears that the general solution of (116) onsists of all irles enteredon the y axis, plus one \exeptional" urve, the x-axis. We will see shortly that thisdoes not meet our de�nition of \general solution", however. But what is orret isthat the general solution of (116), in impliit form, isfx2 + (y � b)2 = b2 j b 6= 0g and fy = 0g: (120)An alternative way of expressing the general solution in impliit form is as follows.In (118), C an be any nonzero onstant, so we may write C as 1K , where the allowedvalues of K are also anything other than zero. We an then rewrite (118) as y =K(x2 + y2). The solution urve that lie in R+ have K > 0; those that lie in R+ haveK < 0. These give all the impliit-form solutions in the \b-family", just expressedin di�erent-looking but algebraially equivalent way. But magially, if we now allowK = 0, we get the lonely y = 0 solution as well. So we an also write the generalsolution of (116), in impliit form, as 65



y = C(x2 + y2) (121)where C is a ompletely arbitrary onstant. (We have renamed K bak to C justbeause we felt like it.)Now, why is it that the general solution of (116) (no \in impliit form") is notthe olletion of irles plus the x-axis? In Figure 4, start at a point other than theorigin on any of the irles. Move along the irle in either diretion till you reahthe origin. When you reah the origin ontinue moving, but go out along a di�erentirle, either on the same side of the y-axis as the �rst irle or on the opposite side,whatever you feel like. Stop before you reah the origin again. Erase the endpointsof the urve you just drew (see the seond paragraph after De�nition 2.41), and youhave a perfetly good, smooth, solution urve that is not ontained in any irle orin the x-axis.You an let the x-axis into this game as well. For example, start on the positivex-axis, move left till you reah the origin, and then move out along one of the irles.The phenomenon above is the reason we allow possibility (iii) in De�nition 2.52.
Some autionary notes on our terminology:1. An extremely areful reader may have notied that in the �rst part of theDe�nition 2.52 we do not require the solution urves to be maximal, as onemight have expeted from omparison with De�nition 2.18 and the disussionbefore that de�nition. The reason is that we have de�ned maximal solutionurves of Mdx+Ndy = 0 only in regions in whih Mdx+Ndy has no singularpoints, while De�nition 2.52 allows for singular points. Beause we do not insiston maximality of the urves in De�nition 2.52, there is redundany built intothis de�nition that we were able to avoid in De�nition 2.18: the general solutionof (109) inludes solution urves that are subsets of other solution urves.Example 2.57 illustrates one of the reasons it is diÆult to give a satisfatory,useful, general de�nition of \maximal solution urve" of Mdx + Ndy = 0 in aregion that inludes singular points ofMdx+Ndy. For the sake of onreteness,using Figure 4 for referene, start at the point P = (0; 1) and move ounter-lokwise along the \upper irle" x2+(y�1)2 = 1. When you reah the origin,ontinue by moving along the mirror-image \lower irle" x2 + (y + 1)2 = 1,lokwise, until you reah the point Q = (0;�1). Deleting the endpoints in or-der to meet our de�nition of \smooth urve", you now have an open S-shapedurve smooth from P to Q. This urve is extendible to a larger solution urve:imagine dragging the starting-point P lokwise along the upper irle, anddragging Q lokwise along the lower irle. We an drag P to any point in the66



open �rst quadrant lying on the upper irle, and an drag Q to any point inthe open third quadrant lying on the lower irle. No matter how far we dragP or Q (subjet to the quadrant restritions), the urve we get is a solutionurve of (116) that is extendible to a larger solution urve; we an always dragthe endpoints farther, getting them loser and loser to the origin. Were we toallow P or Q to reah the origin, we would violate our de�nition of \smoothurve" (e.g. were we to let them both reah the origin, we'd have a �gure-8).So there is no largest smooth solution urve that ontains our S-shaped solutionurve.2. Do not be misled by the terminology \the general solution of (109), in R, inimpliit form." While there is only one general solution of (109) in R|theolletion of all solution urves in R|there are in�nitely many impliit forms ofthis general solution. Sometimes two di�erent impliit forms of the same generalsolution in R may di�er only in \trivial" ways; for example, if one impliit formof the general solution in R is a family of equations F (x; y) = C, then anotheris 2F (x; y) = C, and another is F (x; y)3 = C. But this is not the only waythat the impliit forms of the same general solution an di�er. We saw this inExample 116, and we see it again in the next example.3. In De�nition 2.52, the author hose to reserve the term \general solution" (withno extra words other than, perhaps, \in R") for the olletion of all solutionurves, beause urves, and not funtions or equations, are what a DE in dif-ferential form is looking for. An unfortunate onsequene of this hoie is thatone must then deide what other term to use for a olletion of algebrai equa-tions whose graphs yield all the solution urves. The author's hoie, \generalsolution in impliit form", has some de�nite disadvantages. Among these is thefat that the general solution in impliit form an be very expliit, as in thenext example.Example 2.58 Consider the DE xdy � ydx = 0: (122)The student may hek that every straight line through the origin|whether horizon-tal, vertial, or oblique|is a solution urve.The only singular point of xdy � ydx is the origin. Therefore in R = fR2 minusthe origing, there is a unique maximal solution urve through every point. If we takethe straight lines through the origin, and delete the origin, we get the olletion ofopen rays emanating from the origin. Every point of R lies on one and only one suhray. Therefore these are all the solution urves of (122) in R. It follows that thereare no inextendible solution urves in R2 other than what we get by re-inluding theorigin, i.e., the family of all straight lines through the origin.67



There are several ways we an write equations for this family of straight lines,i.e. write the general solution of (122) in impliit form, one of whih isfy = Cxg and fx = 0g: (123)This grouping puts all the non-vertial lines into one family, and makes the vertialline look lonely. But another simple way of writing the general solution of (122) inimpliit form is fx = Cyg and fy = 0g: (124)This groups all the non-horizontal lines together, and orphans the horizontal lineinstead. In ontrast to what we saw in Example 116, in the urrent example thereis no single family of equations, parametrized by one real-valued arbitrary (or semi-arbitrary) onstant, that onstitutes a general solution of (122) in impliit form.Example 2.59 (Level-set with a orner) Let F (x; y) = y3 � jxj3. This fun-tion has ontinuous seond partial derivatives on the whole plane R2 (for example�F�x (x; y) = � �3x2; x � 03x2; x � 0 , so �2F�x2 (x; y) = � �6x; x � 06x; x � 0 ). It has one ritialpoint, the origin. The level-set ontaining this ritial point is the graph ofy3 � jxj3 = 0; (125)whih is simply the graph of y = jxj. The portion of this graph in the open �rstquadrant (y = x; x > 0) is a smooth urve ontained in this level-set, and so is theportion of this graph in the open seond quadrant. But the origin is a point of thislevel-set that is not ontained in any smooth urve in the level-set.Equation (125) is a solution ofy2dy +� �3x2; x � 03x2; x � 0 � dx = 0; (126)it meets both riteria in De�nition 2.48. However, the graph of (125) ontains a point,(0; 0), that is not on any solution urve of (126) (see De�nitions 2.42 and 2.41). Thus,in general, the graph of a solution \F (x; y) = C" of dF = 0 an inlude points thatdo not lie on any solution urve of dF = 0.2.6 Relation between di�erential form and derivative formSuppose that C is smooth urve, and  a ontinuously di�erentiable, non-stop para-metrization of C, with domain-interval I. Write (t) = (f(t); g(t)) (for what we are68



about to do, writing \(t) = (x(t); y(t))" would lead to onfusion). Let's all subin-terval I1 of I \x-monotone" if f 0(t) is nowhere 0 on I1, and \y-monotone" if g0(t)is nowhere 0 on I1.43 (These are not mutually exlusive: if both f 0(t) and g0(t) arenowhere zero on I1, then I1 is both x-monotone and y-monotone.)Sine  is a non-stop parametrization, for every t 2 I at least one of the twonumbers f 0(t); g0(t) is nonzero. Hene every t 2 I lies in at least one of the setsft 2 I j f 0(t) 6= 0g, ft 2 I j g0(t) 6= 0g. It an be shown that eah of these sets isa union of subintervals of I. Thus, every t 2 I lies in a subinterval I1 that is eitherx-monotone or y-monotone.Let I1 be an x-monotone interval. Then f 0(t) not zero for any t 2 I1. TheInverse Funtion Theorem that you may have learned in Calulus 1 assures us thatthere is an inverse funtion f�1, with domain an interval I2 and with range I1, andthat f�1 is ontinuously di�erentiable44. Let C1 be the smooth urve parametrizedby (f(t); g(t)) using just the x-nie open interval I1 rather than the whole originalinterval I. On this domain, \x = f(t)" is equivalent to \t = f�1(x)". So, temporarilywriting tnew = x, for (x; y) = (f(t); g(t)) 2 C1 we havex = tnew;y = g(t) = g(f�1(x)) = g(f�1(tnew))= �(tnew)where tnew 2 I2 and � = g Æ f�1. Sine g and f�1 are ontinuously di�erentiable, sois h. Furthermore, dx=dtnew � 1 6= 0. Therefore the equations above give us a newontinuously di�erentiable, non-stop parametrization new of C1:new(tnew) = (tnew; �(tnew)): (127)The variable in (127) is a \dummy variable"; we an give it any name we like. Sinethe x-omponent of new(tnew) is simply the parameter tnew itself, we will simply usethe letter x for the parameter; thusnew(x) = (x; �(x)): (128)Thus, this parametrization uses x itself as the parameter, treats x as an independentvariable, and treats y as a dependent variable related to x by y = �(x).43This is very temporary terminology, invented only for this part of these notes.44This important theorem used to be stated, though usually not proved, in Calulus 1. Unfor-tunately, it seems to have disappeared from many Calulus 1 syllabi. The theorem says that if fis a di�erentiable funtion on an interval J , and f 0(t) is not 0 for any f 2 J , then (i) the rangeof f is an interval K, (ii) an inverse funtion f�1 exists, with domain K and range J , and (iii)f�1 is di�erentiable, with its derivative given by (f�1)0(x) = 1=f 0(f�1(x)). (If we write x = f(t)and t = f�1(x), then the formidable-looking formula for the derivative of f�1 may be written inthe more easily remembered, if somewhat less preise, form dtdx = 1dx=dt .) If the derivative of h isontinuous, so is the derivative of h�1. 69



Now suppose that our original urve C is a solution urve of a given di�erential-form DE M(x; y)dx+N(x; y)dy = 0: (129)Then C1, a subset of C, is also a solution urve, so every ontinuously di�erentiable,non-stop parametrization (x(t); y(t)) of C1 satis�esM(x(t); y(t))dxdt +N(x(t); y(t))dydt = 0 (130)In partiular this is true for the parametrization (128), in whih the parameter t is xitself, and in whih have y(t) = �(t) = �(x) = y(x). Therefore, for all x 2 I2,0 = M(x; �(x))dxdx +N(x; �(x)) �0(x)= M(x; �(x)) +N(x; �(x)) �0(x): (131)The right-hand side of (131) is exatly what we get if we substitute \y = �(x)" intoM(x; y) +N(x; y) dydx . Hene � is a solution ofM(x; y) +N(x; y)dydx = 0: (132)Therefore the portion C1 of C is the graph of a solution (namely �) of thederivative-form di�erential equation (132).Similarly, if C2 is a portion of C obtained by restriting the original parametriza-tion  to a y-monotone interval I2, then C2 is the graph of of a di�erentiable funtionx(y)|more preisely, the graph of the equation x = �(y) for some di�erentiablefuntion �|that is a solution of the derivative-form di�erential equationM(x; y)dxdy +N(x; y) = 0: (133)Therefore:Every solution urve of the di�erential-form equation (129)is a union of graphs of solutions of the derivative-formequations (132) and (133). 9=; (134)Note that the graphs mentioned in (134) will overlap, in general, sine the x-monotoneintervals and y-monotone intervals of a ontinuously di�erentiable, non-stop para-metrization  will usually overlap. (The only way there will not be an overlap isif f 0(t) � 0 or g0(t) � 0, in whih ase C is a vertial or horizontal straight line,respetively, and there are, respetively, no x-monotone or y-monotone subintervals.)70



We all (132) and (133) the derivative-form equations assoiated with (129). Sim-ilarly, we all (129) the di�erential-form equation assoiated with either of the equa-tions (132), (133).More generally, if a derivative-form equation is algebraially equivalent to (132)or (133) on a region R, we all the equation a derivative form of (129) on R. Similarly,if a di�erential-form equation is algebraially equivalent to (129) on a region R, weall the equation a di�erential form of (132) and (133) on R.45Now ompare (132) with the general �rst-order derivative-form DE with inde-pendent variable x and dependent variable y,F(x; y; dydx) = 0: (135)Equation (132) is a speial ase of (135), in whih the dependene of F on its thirdvariable is very simple. If we use a third letter z for the third variable of F, then (132)orresponds to taking F(x; y; z) =M(x; y) +N(x; y)z, a funtion that an depend inany oneivable way on x and y, but is linear separately in z. In general, (135) ouldbe a muh more ompliated equation, suh as�dydx�3 + (x + y) sin(dydx) + xey = 0: (136)Solving equations suh as the one above is muh harder than is solving equationsof the simpler form (132). For ertain funtions F that are more ompliated than(132), but muh less ompliated than (136), methods of solution are known. Butthere is not a highly-developed general theory for working with equation (135) forgeneral F's.One of the features of (132) that makes it so speial is that on any region onwhih N(x; y) 6= 0, (132) is algebraially equivalent todydx = �M(x; y)N(x; y) ; (137)whih is of form dydx = f(x; y): (138)Reall that equation (138) is exatly the \standard form" equation that appears inthe fundamental Existene and Uniqueness Theorem for initial-value problems. This45This is more restritive than the analogous statement in the textbook from whih the author isurrently teahing, whih omits the requirement of algebrai equivalene. This textbook, and others,allow multipliation/division by funtions that an be zero. But this an lead to the omission of oneor more solutions of the original DE, or the inlusion of one or more spurious solutions|funtions(or urves) that are not solutions (or solution urves) of the original DE|when trying to write downthe general solution of the original DE. 71



theorem is absolutely ruial in enabling us to determine whether our tehniques of�nding solutions atually give us all solutions.If you re-read these notes, you will see that all the general fats about DEsin derivative form|suh as the de�nition of \solution", \impliit solution", \gen-eral solution", and the fat that algebraially equivalent DEs have the same set ofsolutions|were stated for the general �rst-order DE (135). These fats apply just aswell to nasty DEs like (136) as they do to (relatively) nie ones like (135). However,in all of our examples, we used equations that were algebraially equivalent to (132)on some region (hene also to (138)). The reason is that although the onept of \theset of all solutions" makes perfetly good sense for the general equation (135), theauthor wanted to use examples in whih he ould show the student easily that theset of all solutions had atually been found.Nowadays, students in an introdutory DE ourse rarely see any �rst-orderderivative-form equations that are not algebraially equivalent, on some region, toa DE in the standard form (138). Beause of this, it is easy to overlook a signi�antfat: the only derivative-form DEs that are related to di�erential-form DEs are thosethat are algebraially equivalent to (138) on some region. The two types of equations,in full generality, are not merely two sides of the same oin.However, for derivative-form DEs that an be \put into standard form"|whihare exatly those that are algebraially equivalent to a DE of the form (132)|thereis a very lose relation between the two types of DEs. We are able to relate many,and sometimes all, solutions of a DE of one type to solutions of the assoiated DEsof the other type. Statement (134) gives one suh relation.Let us say that a derivative-form equation, with independent variable x anddependent variable y, is in \almost standard form"46 if it is in the form (132), or anbe put in that form just by subtrating the right-hand side from the left-hand side. Ifyou re-inspet the argument leading to the onlusion below equation (133), you willsee that it also shows that the graph of every solution of (132) or (133) is a solutionurve of (129). Thus:The graph of every solution of a derivative-formequation in almost-standard form is a solutionurve of the assoiated di�erential-form equation. 9=; (139)Combining (134) and (139), we onlude the following:A smooth urve C is a solution urve of an equationin di�erential form if and only if C is a union ofgraphs of solutions of the assoiated derivative-formequations. 9>>=>>; (140)46Another bit of terminology invented only for these notes, just to have a name to distinguish(132) from (137) on regions in whih N(x; y) may be zero somewhere.72



We emphasize that in deriving these relations, the transition from the di�erential-form DE (129) to the derivative-form DEs (132) and (133) was NOT obtained by thenonsensial proess of \dividing by dx" or \dividing by dy", even though the notationmakes it look that way. The transition was ahieved by understanding that what weare looking for when we solve (104) is urves whose parametrizations satisfy (130),and that for partiular hoies of the parameter (valid on the intervals that we alled\x-monotone" or \y-monotone") (130) redues to (132) or (133).Similarly, transitions from derivative form to di�erential form are NOT ahievedby the nonsensial proess of \multiplying by dx" or \multiplying by dy". The beautyof the Leibniz notation \ dydx " for derivatives is that it an be used to help remembermany true statements by pretending, momentarily, that you an multiply or divideby a di�erential just as if it were a real number47. In partiular, we an use thispriniple help us easily remember that the di�erential-form equation (129) is relatedto (but not the same as!) the derivative-form equations (132) and (133). But thisnotational trik doesn't tell us everything, suh as the preise relationship amongthese equations, whih is statement (139) (of whih statement (134) is the \only if"half).Now let us turn to the way that di�erential-form DEs are used to help us �ndsolutions of almost-standard-form derivative-form DEs. In this setting, we start withan equation of the form (132) (or one that an be put in this form by subtrating oneside of the equation from the other). We then look at the assoiated di�erential-formequation M(x; y)dx+N(x; y)dy = 0, whih treats x and y symmetrially, remember-ing that what we want in the end are solutions that are funtions of x. Suppose thatC is a solution urve ofM(x; y)dx+N(x; y)dy = 0. Then, from statement (134), everysolution urve is a union of (usually overlapping) sub-urves, eah of whih is eithera solution y = �(x) of (132), or a solution x = �(y) of (133). But what are lookingfor now is solutions only of the �rst type. C may ontain a vertial line segment, butsuh a segment is not ontained in the graph of any equation of the form y = �(x).However, if we delete from C any points at whih the tangent line is vertial, remainsis a union of graphs of solutions of (132).That desribes the geometri relation between solutions of Mdx+Ndy = 0 andsolutions of (132), but what an we say in terms of formulas? Let us suppose that (forour givenM andN) we have found a solutionG(x; y) = 0 ofM(x; y)dx+N(x; y)dy =0. Referring bak to (2.48), this implies that(a) the graph of G(x; y) = 0 ontains a smooth urve,and that47Simultaneously, the weakness of the Leibniz notation is that it promotes some inorret or lazythought-patterns. It enourages the manipulation of symbols without the understanding of whatthe symbols means. It may lead the student to think something is \obviously true" when it isn'tobvious, and often when it isn't true. 73



(b) any portion of this graph that's a smooth urve is a solution urve ofMdx +Ndy = 0.We ask the question: is G(x; y) = 0 an impliit solution of our original derivative-form equation (132)?To answer this question, we go bak to De�nition 2.4. In order for G(x; y) = 0to be an impliit solution of (132), its graph must, �rst of all, ontain the graphof some solution y = �(x) of (132). Fousing on the fat that suh a solution is adi�erentiable funtion of x, we ask: is it ever possible for a graph of G(x; y) = 0 notto ontain the graph of a di�erentiable funtion of x, on any interval, no matter howtiny?The graph of G(x; y) = 0 ontains points of (potentially) two types: thosethat lie in a smooth urve ontained in the graph, and those that do not. Let'ssuppose that C is a smooth urve lying in the graph of G(x; y) = 0, but assumethat this graph does not ontain the graph of a di�erentiable funtion of x. Let(t) = (f(t); g(t)) be a ontinuously di�erentiable, non-stop parametrization of C,with parameter-interval I. In the language we used in the argument leading to (134),if I ontains an x-monotone interval, then that argument shows that C ontainsthe graph of a di�erentiable funtion of x, whih would ontradit our assumption.Therefore I ontains no x-monotone intervals, so f 0(t) � 0 on I. Therefore f isonstant; we have f(t) � x0 for some x0. Hene C is ontained in the vertial linefx = x0g.This shows that if the graph of G(x; y) = 0 does not ontain the graph of adi�erentiable funtion of x, then the graph onsists entirely of segments of vertiallines, plus any points of the graph not ontained in a smooth urve.It an be shown that if the funtion G is di�erentiable|whih will usually be thease if the equation G(x; y) = 0 is found by the tehniques used in an introdutoryDE ourse|and the graph of G(x; y) = 0 satis�es all the onditions above, thenthere are no points on this graph that do not lie on a smooth urve in the graph,and the graph onsists entirely of vertial lines. From this, it an further be shownthat G(x; y) is a funtion of x alone. (For example, the equation G(x; y) = 0 ouldbe x = 3, whose graph in the xy plane is a single vertial line, or x2 � 1 = 0, whosegraph is two vertial lines; or sin x = 0, whose graph is an in�nite olletion of vertiallines.) In this ase, the solution \G(x0; y0) = 0" of M(x; y)dx+N(x; y)dy = 0 is notan impliit solution of M(x; y) +N(x; y) dydx = 0.So if G(x; y) is di�erentiable and is not a funtion of x alone, then the graphof G(x; y) = 0 does ontain the graph of some di�erentiable funtion � of x. Thegraph of y = �(x) is a smooth urve lying in the graph of G(x; y) = 0. Referring to(b) above, we see that this implies that the graph of y = �(x) is a solution urve ofMdx+Ndy = 0. The argument leading from the sentene that inludes (129) to thesentene that inludes (132) then shows that � is a solution of (132).To reap: we have shown that if the equation G(x; y) = 0 is a solution ofM(x; y)dx+N(x; y)dy = 0, and G is di�erentiable, then:74



either G(x; y) is a funtion of x alone, in whih asethe equation G(x; y) = 0 is not an impliit solution ofM(x; y) +N(x; y) dydx = 0, orG(x; y) is not a funtion of x alone, in whih ase theequation G(x; y) = 0 is an impliit solution ofM(x; y) +N(x; y) dydx = 0.
9>>>>>>>>=>>>>>>>>; (141)

Sine the graph of every solution ofM+N dydx is a solution urve ofMdx+Ndy =0, (141) implies the following:Suppose that we have a general solution, in impliit form, of adi�erential-form equation Mdx +Ndy = 0. Further suppose thateah equation in the olletion omprising the general solution isof the form G(x; y) = onstant (not neessarily the same G forall equations in the general impliit-form solution), where Gis di�erentiable. Then the olletion of equations obtained bydeleting those equations for whih G(x; y) depends only on y, isthe general solution, in impliit form, of the assoiated derivative-form equation M +N dydx = 0.
9>>>>>>>>>>>>=>>>>>>>>>>>>; (142)

Example 2.60 (Exat equations, part 4) Suppose that we wish to solve a DE ofthe form M(x; y) +N(x; y)dydx = 0 (143)on a region R on whih N(x; y) is not identially zero (if N(x; y) were identially zero,then (143) would redue to the algebrai equation M(x; y) = 0, not a true di�erentialequation). If the assoiated di�erential-form equation is exat on R, and we havefound a funtion F suh that Mdx + Ndy = dF on R, then Example 2.53 tells usthat the general solution of Mdx +Ndy = 0 on R, in impliit form, is the family ofequations F (x; y) = C (144)where C is a \semi-arbitrary" onstant. The funtion F is automatially di�eren-tiable, so (142) applies: unless F is a funtion of x alone, eah of the equations(144) is an impliit solution of (143). But if F is a funtion of x alone, thenN(x; y) = �F�y (x; y) � 0. Therefore if Mdx + Ndy = dF on R, then (144) is thegeneral solution of (143) in impliit form (i.e. it is not just the general solution, inimpliit form, of the assoiated di�erential-form equation).75


