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First-order ODEs: Derivative form, Differential Form, and
Implicit Solutions

[These notes are under construction. Comments and criticism are welcome. |

Introduction

First-order ODEs come in two forms: derivative form and differential form. The
two forms are closely related, but differ in subtle ways not addressed adequately in
most textbooks (and often overlooked entirely)!. This often leads to an unclear or
inadequate definition of “implicit solution” to an equation in derivative form, before
differential-form equations have even been introduced.

The purpose of these notes is to give a definition of “implicit solution” that is
accurate, complete, and unambiguous. In order to make our presentation readable
concurrently with a DE textbook whose topics appear in a traditional order, we define
“implicit solutions of a DE in derivative form” before we even introduce differential
form. However, one cannot achieve a complete understanding of implicit solutions
without investigating differential-form DEs in more depth than is typical for a first
course in DEs. Therefore, after we cover differential-form DEs in these notes, we
come back to derivative-form equations to clean up the picture.

The first section below is written for mathematicians; it is intended to show why
certain definitions commonly seen in textbooks are inadequate. Most students, in
their first differential equations course, will not be in a position to appreciate these
inadequacies. It is up to each instructor to decide whether, in a first course on ODEs,
it is more important that a definition be short and (superficially) simple than that it
be 100% accurate.

1 Notes for Instructors

[This section is not yet written]

» dy __
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LActually, it is only derivative-form DEs that can be written in the “standard form
f(z,y) that are closely related to differential-form DEs. This is an important difference between
the two types, but there are important differences even between standard-form derivative-form and
differential-form DES.



2 Notes for Students

2.1 Review of “derivative form” and ‘“solution”

In these notes, “differential equation”, which we will frequently abbreviate as “DE”,
always means ordinary differential equation, of first order unless otherwise specified.

A first-order equation DE in derivative form is a differential equation that (up
to the names of the variables), using only the operations of addition and subtraction,
can be put in the form

dy
Fz,y, ﬁ) =0, (1)

where F is a function of three variables. Such a DE has an independent variable (in
this case ) and a dependent variable (in this case y). The notation “g—z” tells you
which variable is which.

Definition 2.1 For a given F, a solution of (1) on an open interval I is a real-valued
differentiable function ¢ on I such that when “y = ¢(x)” is substituted into (1), the
resulting equation is a true statement for all € 1.2

For a given F, we call a one-variable function ¢ a solution of (1) (no interval
mentioned) if ¢ is a solution of (1) on some open interval 7. W

(In these notes, the symbol Il indicates the end of a definition, example, exercise,
or theorem.)

Henceforth, whenever we say “solution of a differential equation on an interval
I” we always mean an open interval .3

If ¢ is a solution of a given DE (perhaps with an interval specified, perhaps not)
whose dependent and independent variables are y and x respectively, we allow our-
selves the freedom to say that the equation “y = ¢(x)” is a solution of the DE. This

2 Some authors refer to what we have just defined as an explicit solution of (1) on I. This use
of “explicit” is intended to help students understand later, by way of contrast, what an implicit
solution is. But the author of these notes feels that the terminology “explicit solution” is misleading
and potentially confusing. So-called “explicit solutions” can be functions for which it is effectively
impossible to write down an explicit formula, which is usually what one means by “explicitly-defined
function”.

3In order to avoid certain distracting technicalities, in these notes we stick to open intervals for
the allowable domains of solutions to differential equations in derivative form. However, often it
is important to study differential equations on non-open intervals as well. For example, in initial-
value problems in which the independent variable is time ¢, we are generally interested only in what
happens in the future of the initial time tg, not in the past. In this case, the relevant intervals are of
the form [tg, 00), [to,t1), or [to,t1], where t; > to. Most of the statements made in these notes about
differential equations on open intervals can be generalized to non-open intervals, but sometimes the
statements have to be worded in a more complicated fashion. Your instructor can tell you which
statements generalize, and what modifications need to be made.



allows us the convenience of being able to say, for example, “y = 22 is a solution of
Z—g = 22" without having to introduce extra notation (e.g. the letter ¢ we have been
using) for the squaring function. This is an example of “permissible abuse of termi-
nology”. An equation and a function are two different animals, and we should not
forget the fact that, by definition, a solution of a DE is a one-variable function. But
once we understand what “solution of a DE” means, we allow ourselves the luxury of
saying, imprecisely, that “y = 22 is a solution of % = 227 instead of the precise but

awkward, “The function ¢ defined by ¢(z) = z? is a solution of % =2z

2.2 Implicit solution of a derivative-form DE

Key in understanding what “implicit solution of a differential equation” means is
the understanding the concept of an implicitly defined function of one variable. You
learned about implicitly defined functions as far back as Calculus 1, when you studied
implicit differentiation, but we will review the concept here. In order to make sure
the concept is clear, we go into more depth than you probably did in Calculus 1 (or
even Calculus 3).

Suppose we are given an algebraic (i.e. non-differential) equation in variables x
and y. We can always write such an equation in the form

G(z,y) =0
for some two-variable function G. We may be interested in solving for y in terms of
x. For example, if
4y —1=0 (2)
then

y=(1=-a)h, )

In other words, if we define G(z,y) = 22+ 3> — 1 and ¢(z) = (1 — 2%)*/3, then
whenever the pair (z,y) satisfies G(z,y) = 0, it satisfies y = ¢(x). Conversely, one
may verify by direct substitution that if y = (1 — 22)'/3 then G(z,y) = 0. Thus

G(z,y) =0 if and only if y = ¢(x). (4)

7

Note that the “if” part of this implication is the “Conversely ...” statement above,

and can be written equivalently as the equation

Gz, p(x)) = 0.

More generally than this example, any time (4) is true for a two-variable func-
tion G and one-variable function ¢, we say that the equation G(z,y) = 0 implicitly



determines (or implicitly defines) y as a function of z, and we call ¢ the function of
x implicitly determined/defined by the equation G(z,y) = 0.
Now consider the equation

2?4y —1=0. (5)

“Solving for y in terms of x” gives the relation

y=+Vv1-—a2 (6)

Looking just at (5), it is already clear that any numerical choice of z restricts the
possible choices of y that will make the equation a true statement. Equation (6) tells
us the only possible values for y that will work. It also tells that for —1 <z < 1
there are at most two such values; for x = 1 and for x = —1 there is at most one
such value; and for || > 1 there are no values of y that will work. Conversely, if we
substitute y = +v/1 — 22 into (5), we see that all the values of y that we have labeled
as “possible” actually do work. Thus

2 +y*—1=0 if and only if |z| <1 and either y = V1 — 22 or y = —V1 — 22. (7)

This is a much weaker statement than a statement of the form (4), because the
sign in +v/1 — 22 can be chosen independently for each z. On the domain [—1, 1], if
we define

é1(z) = V1—2a? (8)

P2(x) = —V1-a? (9)
V1 —2?2  if x is a rational number,

ds(r) = { —+/1 — 22 if x is an irrational number, (10)

then all three of these functions yield true statements, for all + € [—1,1], when
substituted in as y in (5). In fact, since the sign “+£” can be assigned randomly for
each x € [—1, 1], there are infinitely many functions ¢ that work. What distinguishes
¢, and ¢, from all the others is that they are continuous. If we restrict their domains
to the open interval (—1,1), then they are even differentiable.

Now consider a more complicated equation, such as

e® + x + 6y° — 15y — 10y> + 30y% + 10xy? = 0. (11)

Clearly, choosing a numerical value for x restricts the possible values for y that will
make (11) a true statement. It turns out that, depending on the choice z, there
can be anywhere from one to five values of y for which the pair (x,y) satisfies (11).
As in the previous example, on any z-interval I for which there is more than one



Figure 1: The graph of e* + z + 6y° — 15y* — 10y® + 30y? + 10zy? = 0.

y-value that “works” for each x, there will be infinitely many functions ¢ for which
G(z,p(x)) = 0, where G(z,y) is the left-hand side of (11). However, there are not
very many continuous ¢’s that work. In this example, whatever z-interval I we
choose, there can are at most five continuous functions ¢ defined on I for which
G(z, ¢(x)) = 0. Writing out ezplicit formulas for them, analogous to the formulas for
¢, and ¢ in the previous example, is a hopeless task. But these continuous functions
¢ exist nonetheless. We can see this visually in Figure 1.

Definition 2.2 Let G be a function of two variables, ¢ a function of one variable,
and [ an interval. We say that the equation G(x,y) = 0 implicitly determines or
implicitly defines the function ¢, regarded as a function of z (or whatever name is
used for the first variable of G), if G(x, ¢(x)) =0 for all z € I.

Without reference to a specific interval I, we say that the equation G(z,y) =0
implicitly determines ¢, regarded as a function of the first variable of GG, if the equation
G(z,y) = 0 implicitly determines ¢ (regarded as a function of x) on some open
interval.

The same definitions apply if the “0” in G(z,y)
real number, or even by another function H(z,y) (

“G(z,¢(x)) = 07 with “G(z, ¢(z)) = H(x,¢(x))”. I

= 0 is replaced by any other
in the latter case, we replace

Graphically, a function ¢ is implicitly determined by the equation G(z,y) = 0 if
the graph of ¢ is part of the graph of G(x,y) = 0. (For these purposes, “all of” is a
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special case of “part of”.)

There are instances in which we are interested in whether there is one-variable
function ¢ such that G(¢(y),y) = 0. This comes up when we think of trying to solve
the equation G(x,y) = 0 for x in terms of y, rather than for y in terms of . To handle
this case we can give a definition analogous to Definition 2.2, replacing the phrases
“regarded as a function of x” and “first variable” with “regarded as a function y and
“second variable”, and replacing “G(z, ¢(z)) = 0 with “G(¢(y),y) = 0”. To simplify
wording below, any time we say an equation G(z,y) = 0 implicitly determines (or
defines) a function ¢, we mean to regard ¢ as a function of z, unless we say other-
wise.

Thus:

e Equation (2) implicitly determines the function ¢ given by the formula ¢(z) =
(1 —2?)'/3,

e Equation (5) implicitly determines the functions ¢y, ¢q, ¢3 defined in (8)—(10),
and infinitely many others on the interval [—1,1]. The only continuous functions
that (5) determines on [—1, 1] are ¢; and ¢,.

e Equation (11) implicitly determines infinitely many functions, but only a few
continuous functions. In Figure 1, if we travel along the graph by starting
at the upper left and moving along the curve, we encounter vertical tangents
at points A, B, C, and D (labeled in the order that we encounter them).
Let x4, xp, ¢, and xp denote the x coordinates of these points. Then (11)
implicitly determines a continuous function of z, say ¢, with domain (—oo, z 4];
another continuous function of x, say ¢o, with domain [x g, z 4]; another, say ¢s,
with domain [z, z¢]; another, say ¢4, with domain [zp, z¢]; and another, say
¢5, with domain [zp,00]. On the interval [—3, —2], the equation G(z,y) = 0
determines five continuous functions (the restrictions of ¢y, @9, @3, ¢4, and ¢5 to
this interval). On the interval [—5, —4], G(x, y) = 0 determines three continuous
functions (the restrictions of ¢, ¢4, and ¢5 to this interval).

In some cases, an equation G(z,y) = 0 will implicitly determine one and only
one function of x on some interval. That is a “best-case scenario”. When we are
in such a case, we can speak unambiguously of the function of x determined by this
equation. Often we can achieve this result “windowing” = and y; i.e., by agreeing to
consider only pairs (x,y) where x lies in some specific interval I and y lies in some
specific interval J. We denote the corresponding set in xy plane by I x J:

IxJ={(z,y) |z €l andyec J}.

In these notes we will call such a set a rectangle, even though we do not exclude the
possibility that I and/or J extend(s) infinitely in one direction or both. Thus, for
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Figure 2: The graph of 2% +y2 = 1.

example, we consider the whole xy plane a rectangle; the set [1,00) x (—00,00) is a
rectangle (consisting of all pairs (z,y) for which x > 1); the strip (—oo, 00) x (0, 1]
is a rectangle (consisting of all pairs (z,y) with 0 < y < 1). Of course, objects that
Euclid would have called rectangles, such as [1,2] x [3.1,4.9], are also rectangles in
our terminology. In these notes, we will be most interested in open rectangles, those
we get by taking the intervals I and J to open.

When an equation G(z,y) = 0 implicitly determines more than function of z,
“windowing” may allow us to single out one of them. For example, consider the graph
of the circle z? + y? = 1 (Figure 2).

Let P = (xy,%o) be any point on the circle other than (1,0) or (—1,0); thus
yo # 0. For any such point, you can draw an open rectangle R = I x .J, containing
(%0, Yo), such that the portion of the circle lying in R is a portion of the graph of ezactly
one of the two functions ¢y, ¢o in (8)—(9) (¢1(z) = V1 — 22, ¢o(x) = —v/1 — 22). For
example, if yy > 0 you can take J to be any open subinterval of (0, 00) that contains
Yo, and then take I to be any open interval whatsoever that contains zy. Choose some
points on the graph in Figure 2 and draw rectangles around them with the desired
property.

Note that the closer your point (xg,yo) gets to (1,0) or (—1,0), the more limited
your choices of I and J become, in the sense that one endpoint of I will have to be
very close to xy, and one endpoint of J will have to be very close to yy. For example
if yo = —.01 and xy = v/.9999 =~ .99995, then the right endpoint of I will have to lie
between /.9999 and 1, while the right endpoint of J (which gives the location of the
upper boundary of the rectangle) will have to lie between —.01 and .01. But as long
as (zo, o) # (£1,0), some open rectangle will work.

If you take (zo,y0) = (1,0), then this windowing process fails in two ways to
have the desired effect. First, for no open interval I containing 1 is there a function
¢ defined on all of I such that 22 + ¢(x)* = 1 for all x € I, because such an interval
I will contain an z that is greater than 1 (so z? + ¢(2)? > 1 no matter what you



choose for ¢(x)). Second, for any open rectangle I x J containing (1,0), for values of
x very close to but less than 1, both the point (x,v/1 — z2) and (z, —V/1 — 22) will lie
in I x J. Thus I x J will include points of the graphs of both ¢; and ¢, no matter
how small you take I and J.

Of course, similar statements are true for the point (z¢,yo) = (—1,0).

The Implicit Function Theorem gives conditions under which the “windowing
near a point (zg,yo)” idea works very nicely to guarantee that an equation such as
“G(z,y) = 0” determines at least one differentiable function of z, and, if it determines
more than one such function, to use (zy,yp) to single out one of them:

Theorem 2.3 (Implicit Function Theorem) Let G be a two-variable function
whose first partial derivatives are continuous on an open rectangle R = 1 x J. Suppose
that (z9,v0) € R and that %(xo,yo) # 0, where % denotes the partial derivative of
G with respect to the second variable. Let ¢y = G(xg,yo)-

Then there exists an open subinterval Iy of I containing xy, an open subinterval
J1 of J containing yo, and a continuously differentiable function ¢ defined on I, such

that

for all points (z,y) € I} x Jp,

G(z,y) = ¢ if and only if y = ¢(x). (12)

Since xg lies in I, we may look at what (12) tells us when x = . What this
statement reduces to when x = z; is the following:

for all y € Jy,
G(z9,y) = o if and only if y = ¢(xp).

But by the definition of ¢, we have G(zo,v9) = ¢o. Therefore, since yy € Jy, the
“only if” part of the above statement tells us that yy = ¢(zo). Thus, the graph of the
function ¢ that the Implicit Function Theorem gives us will always contain the point
(20, Yo)-

Let us pause to appreciate how strong the conclusion of this theorem is. State-
ment (12) says that for each x € Iy, there is one and only one value y € .J; for
which G(z,y) = ¢y, namely the value ¢(x). Thus, (12) says that within I; x J;, the
equation G(zo,yo) = 0 determines y uniquely as a function of x. Not just uniquely
among “nice” functions, like continuous or differentiable functions. Among all func-
tions with domain /; and range contained in Jy, ¢ is the only function that satisfies
G(z,¢(x)) = ¢y identically in z. This function has the additional nice feature of be-
ing continuously differentiable (and hence continuous), but there is no other function
whatsoever on I; that satisfies G(z, ¢(x)) = ¢ identically in x.
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Compare statement (12) with statement (4). The only important difference is
that to get the second line of (12), we had to make the windowing restriction in
the first line. (The fact that we have “cy” in (12) where we have “0” in (4) is an
unimportant difference.) This is usually the best we can do; only occasionally do we
have situations in which we can take the “window” to be the whole zy plane and still
get a unique implicitly-defined function.

The uniqueness of a function ¢ that is guaranteed by a statement of the form (12)
allows us to use terminology that is less awkward than what we used in Definition
2.2. Specifically, whenever a statement of the form (12) holds true, we can dispense
with the phrase “regarded as a function of the first variable of G” in that definition,
or even naming the function ¢ at all. We may simply say the following:

Within the rectangle I; x Ji, the equation G(x,y) = ¢y determines y
uniquely as a function of x.

Optionally, we may put the word “implicitly” in front of “determines” above. Doing
so emphasizes the fact that we are not saying we know how to produce a formula
that tells us how to compute y from x (we may or may not be able to produce such
a formula, depending on the function G); we are simply saying that for each x € I,
one and only one value of y is singled out. But an unambiguous assignment of a value
y to each x € I is exactly what “function on I;” means, by definition. No explicit
formula is required in the definition of “function”.
Similarly, if there exists a function ¢ defined on J; such that

for all points (z,y) € I x Jp,

G(z,y) = ¢ if and only if = = ¢(y) (13)

then we can say simply that within the rectangle I; x Ji, the equation G(x,y) = ¢
determines x uniquely as a function of y. Thus, when condition (13) is met, we do
not have to write a whole new definition analogous to Definition 2.2, with “regarded
as a function of the first variable” replaced with “regarded as a function of the second
variable”, and with “G(z, ¢(z)) = 0” replaced with “G(¢(y),y) = 0.

When either (12) or (13) holds for some rectangle I; x .J;, we call ¢ an implicitly-
defined function.

Exercise. Look back at Figure 1. For which points (zo, yo) on the graph is it not true
that there is an open rectangle containing (zo, y9) on which the equation in caption
determines y uniquely as a function of 7 (Don’t try to find the values of zy and yp;
just show with your pencil where these “bad” points are on the graph.) B

Now, let us get back to differential equations:



Definition 2.4 (temporary) We call an equation G(z,y) = 0 an implicitsolution
(one word, for now) of a differential equation
dy
Fla,y,=-) =0 (14)
(for a given F) if
(i) the equation G(z,y) = 0 implicitly determines at least one function ¢ that is
a solution of (14), and
(ii) every differentiable function ¢ determined by the equation G(z,y) = 0 on an
open interval is a solution of (14).

Definition 2.5 If ¢ is a differentiable function determined implicitly by an
implicitsolution G(z,y) = 0 of (14), then we call ¢ an implicitly-defined solution
of (14). M

Example 2.6 Consider the differential equation

d
v+ y% = 0. (15)

We claim that the equation

??+y*—1=0 (16)

is an implicitsolution of (15). (Equivalently, so is the equation ? +5? = 1.) To verify
this, we check that criteria (i) and (ii) of Definition 2.4 are satisfied:

e Criterion (i). Let ¢y (z) = /1 — 2?2 as in (8), but restricted to the open interval
(—=1,1). Note that G(z,¢,(x)) = 1 for all x € (—1,1), so ¢; is a function
implicitly determined by the equation G(z,y) = 1 (the conditions of Definition
2.2) are met).

We compute ¢(z) = 7= . Thus if we substitute y = ¢,(z) into the

left-hand side of (15), we have

—x
z+V1—12 ——
V1—ax2

= 0 forallze (-1,1),

so ¢y is a solution of (15). Thus criterion (i) is satisfied®.

We could just as well have used the function ¢, defined by ¢»(z) = — /1 —z2. But to show
that criterion (i) is met it suffices to come up with one function ¢ that works, so we chose the ¢
that involves (slightly) less writing.
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e Criterion (ii). Suppose ¢ is any differentiable function determined implicitly by
(16) on some open interval /. Then we have

22+ (1)’ —1=0

identically in x on the interval /. Differentiating, we therefore have

22 + 2¢(x)¢' () =0 for all z € 1.

Therefore ¢ is a solution of the equation

d
2z + 2y—y =0
dx
on I. Dividing by 2 we see that ¢ is a solution of (15) on I. Therefore criterion

(ii) is satisfied.

Hence (16) is an implicitsolution of (15), and the function ¢; is an implicitly-defined
solution of (15).

There are actually two implicitly-defined solutions in this example: ¢; and —¢,
(the function that we called ¢ in (9)). The first of these is the function implicitly
defined by 2% 4+ y? = 1 on the rectangle (—1,1) x (0, 00); the second is the function
implicitly defined by x? + y* = 1 on the rectangle (—1,1) x (=00, 0). Both functions
are solutions of (15). M

Example 2.7 We claim that

(y =)@ +y*—1)=0 (17)

is not an implicitsolution of (15). To verify this claim, it suffices to show that at least
one of criteria (i) and (ii) in Definition 2.4 is not met. For this, we observe that if
y = e, then (17) is satisfied. Thus, the function ¢ defined on any open interval I
by ¢(x) = €* is a function determined implicitly by (17). However, if we substitute
y = €” into (15), we get

T+ e =0. (18)

Is it possible to choose the interval I in such a way that (18) holds true for all
x € I? No, for if there were such an interval I, the left-hand side of (18) would be a
differentiable function on I, so we could differentiate both sides of (18) and obtain

1+ 2e* =0. (19)

11



But there isn’t even a single value of x for which this is true; 1 + 2¢* > 0 for all x.
Thus there is no open interval I on which ¢ is a solution of (15).

Thus ¢ is a differentiable function determined implicitly by (17) that is not a
solution of (15). Therefore criterion (ii) in Definition 2.4 is not met, so equation (17)
is not an implicitsolution of (15). (Of course, the same reasoning shows that the
equation y — e® = 0 is not an implicitsolution of (15).)

We mention that in this example, criterion (i) is met. The same function ¢ used
in Example 2.6 is a solution of (15) that is defined implicitly by (17). H

Example 2.8 The equation

4y’ +1=0 (20)

is not an implicitsolution of (15), because it fails criterion (i) of Definition 2.4. There

are no real numbers z,y at all for which (20) holds, let alone an open interval I on

which (20) implicitly determines a function of z. Since (20) determines no functions

¢ whatsoever on any open interval I, criterion (ii) of Definition 2.4 is moot.
Similarly, the equation

?+y" =0 (21)

is not an implicitsolution of (15). In this case there is a pair of real numbers (z,y)
that satisfies (21), but there is no open x-interval I on which, for each x € I, there is
a real number y for which (21) is satisfied. W

Now let us make an observation about implicitsolutions:

An implicitsolution of a DE is not a solution of that DE. (22)

The reason is simple. A solution of a DE is a (one-variable) function. An implic-
itsolution of a DE is a (two-variable) equation. These are two completely different
animals.

However, there is an “abuse of terminology” that we have already said is permis-
sible. When a function ¢ is a solution of a given differential equation F(z,y, Z—i) =0,
we have said that we would allow ourselves to call the equation y = ¢(z) a solution
of that DE. We must recognize that the equation y = ¢(z) is not a function, of any
number of variables. An equation may be used to define a function, as in “¢(z) = €*”.
But “¢” is not the same thing as “the definition of ¢”, any more than an elephant is
the same thing as the definition of an elephant.

We allow ourselves to say, technically incorrectly, that “y = 2z is a solution
of Z—z = 227, because that wording is so much less awkward than “the function ¢

2
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defined by ¢(z) = 2? is a solution of % = 22”5 Note that the equation “y = ¢(z)”,
which we are allowing ourselves to call a solution of a DE if ¢ is a solution of that
DE, is equivalent to the equation “y — ¢(x) = 07, which is an equation of the form
G(z,y) = 0. In the same spirit, we make the following definition:

Definition 2.9 We say that an equation G(x,y) = 0 is an implicit solution (two
words) of a given differential equation if it is an implicitsolution (one word) of that
differential equation, as defined in Definition 2.4.

Combining this definition with observation (22), we have a linguistic paradox:

An implicit solution of a DE is not a solution of that DE.

In other words, the meaning of “implicit solution” cannot be obtained by interpreting
“implicit” as an adjective modifying “solution”. One must regard the two-word phrase
“implicit solution” as a single term, a compound noun whose meaning cannot be
deduced from the meanings of the two words comprising it. That is why we initially
used the the made-up word “implicitsolution”, which the student is not likely to find
outside of these notes. Most textbooks give a definition of “implicit solution” that is
similar to our definition of “implicitsolution”®.

Of course, in English there are many compound nouns of the form “<adjective>
<noun>" that do not mean “a special type of <noun>”. A prairie dog is not a type
of dog.

Note that the terminology “implicitly-defined solution” (Definition 2.5) does not
suffer from any paradox. An implicitly-defined solution of a DE is a solution of that
DE. It meets the criteria of Definition 2.1 perfectly.

Our approach to Example 2.6 above relied on our ability to produce an explicit
formula for a “candidate solution” of the given DE. What if, in place of (16), we had
been given an equation so complicated that we could not solve for y and produce

5QOnly slightly more awkward than “y = z? is a solution of % = 2z” is the following type of

phrasing that you may have seen instructors or textbook-authors use: “The function ¢(z) = z? is a

solution of % = 2z.” This phrasing is certainly much less awkward than, “The function ¢ defined

”»

by ¢(x) = x? is a solution of % = 2z.” The reason we try not to use phrasing like “The function
¢(x) = 2% ...” in these notes is that the function is ¢, not ¢(z). The object ¢(z)—a number—is
the output of the function ¢ when the input is called .

However, practically all math instructors at least occasionally use phrasing like “The function
#(xr) = %7, and some use it all the time. The language needed to avoid such phrasing is often
extremely convoluted (unless the student has been introduced to the notation “z — z?”). So,
while this author does not like it, this type of phrasing is generally regarded as “permissible abuse
of terminology”. Nomnetheless it is important that the student understand the difference between
a function and the output of that function. To help foster this understanding, we (mostly) avoid
this particular abuse of terminology in these notes, even though we allow certain other abuses of
terminology.

6Except that most neglect to include criterion (ii).
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a candidate-solution ¢ to plug into the DE? This is where the Implicit Function
Theorem comes to the rescue.

Example 2.10 " Show that the equation

r+y+e = (23)

is an implicit solution of

d
(1+ xel’y)ﬁ + 1+ ye™ =0. (24)

To show this, we start with the observation that, writing G(z,y) = v+y+e, we
have G(0,0) = 1. So, let us check whether the Implicit Function Theorem applies to
the equation G(x,y) = 1 near the point (0,0) (i.e. taking (zo,yo) = (0,0) in Theorem
2.3). We compute

oG

= - 1 Ty
e (z,y) + ye®™,
oG

_— p— ]_ :cy_
o (z,y) + we

Both of these functions are continuous on the whole xy plane, and %—5(0, 0)=1#0.
Thus, the hypotheses of Theorem 2.3 are satisfied (with R = (—00,00) X (00, 00)).
Therefore the conclusion of the theorem holds. We do not actually need the whole
conclusion; all we need is this part of it: there is an open interval I; containing 0,
and a differentiable function ¢ defined on I, such that G(z, ¢(z)) =1 for all z € I;.

Now we use the same method by which we checked criterion (ii) in Example 15:
implicit differentiation (i.e. computing derivatives of an expression that contains an
implicitly-defined function). Let us simplify the notation a little by writing y(x) =
é(z). Then

x4 y(z) + @ =1 forallz € I,

dy(z)

X

dy(x)

= 1
+ dx

+ 2@ <y(x) + ) =0 forall z € I,

d
=  (1+ xewy(’”))% + 14 y(2)e™® =0 forall x € I,.

Therefore ¢ is a solution of (24). Thus, criterion (i) in Definition 2.4 is satisfied.
The exact same implicit-differentiation argument shows that if ¢ is any differentiable

"This example is taken from Nagle, Saff, and Snider, Fundamentals of Differential Equations and
Boundary Value Problems, 5th ed., Pearson Addison-Wesley, 2008.
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function determined on an open interval by (23), then 1) is a solution of (24). There-
fore criterion (ii) in Definition 2.4 is also satisfied. Hence (23) is an implicit solution

of (24). M

Looking back at Example 2.6, could we have shown that criterion (i) of Defini-
tion 2.4 is satisfied using the technique of Example 2.10, using the function G(z,y) =
z2+y?? Absolutely! For (xy, yp) we could have taken any point of the circle z2+y? = 1
other than (+1,0). The partial derivatives are 2% (z,y) = 2z and %(:r,y) =2y. As
in Example 2.10, the partial derivatives of G are continuous on whole zy plane again®,
and since we are choosing a point (zy, o) for which yo # 0, we have %—(;(xg, Yo) # 0.
Thus, the Implicit Function Theorem applies, guaranteeing the existence of a differ-
entiable, implicitly-defined function ¢, with ¢(xg) = yo. We can then differentiate
implicitly, as we did when we checked criterion (ii) in Example 2.6 (and as we did to
check both criteria in Example 2.10), to show that ¢ is a solution of (15). If our point
(20, yo) has yp > 0, then the solution of (15) that we get is the function ¢; defined by

é1(z) = V1 —a?; if yop < 0 then the solution of (15) that we get is —¢;.

The student may wonder how we could have used the method of Example 2.10
had we not been clever (or lucky) enough to be able to find a point (¢, yo) that lay on
the graph of our equation G(z,y) = a given constant. The answer is that we could
not have, unless we had some other argument showing that the graph contains at
least one point, and, more restrictively, that it contains at least one point at which
oG

e is not 0. For example, had we started with the equation

r+y+e? = (25)

instead of (23), we would have had a much harder time. We could show by implicit
differentiation that every differentiable function determined by 25 is a solution of
24—thus, that criterion (ii) of Definition 2.4 is satisfied—but that would not tell us
that there is even a single function of x defined by (25), or even that the graph of
(25) contains any points whatsoever. Conceivably, we could be in the same situation
as in Example 2.8, in which all differentiable functions implicitly defined by (20)—all
none of them—are solutions of our differential equation.

It so happens that we can show that the graph of (25) contains a point at which
%—g is not 0. However, doing that would require a digression that we do not want
to take right now. Instead, let us consider a different type of problem that can be
handled far more easily, even though the function G(z,y) is much more complicated.

Example 2.11 Show that there is a number ¢y for which the equation

8This does not always happen—Examples 2.6 and 2.10, and several other examples in these notes,
just happen to have G’s with this property.
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e +ar+y’ —yt+ Py Y’ = o (26)

is an implicit solution of the differential equation

d
e’ +1+y?+ (5y4—4y3+3y2+2y+2xy)£ =0. (27)

To approach this problem, we start with a variation on the second step of Ex-
amples 2.6 and 2.10: we assume that there is a number ¢y for which (26) implicitly
determines a differentiable function ¢, say on an interval /. On the interval I, we
may then implicitly differentiate the equation (26)—i.e. differentiate with respect to
x both sides of the equation we obtain by substituting “y = ¢(x)” into (26). To keep
the notation as simple as possible, we will just write “y” instead of “y(z)” or “¢(z)”
when we differentiate. (This is usually what we do when we differentiate implicitly;
we just haven’t done it until now in these notes.) Then, using the chain rule and

product rule, we find

d d d
+ 32 oyt 2y 2xy£ =0,

@_4 3@
dx dx

dx Y dx
which is equivalent to equation (27).

Thus, all differentiable functions ¢ determined implicitly by an equation of the
form (26) will be solutions of (27). Thus for any ¢, for which (26) implicitly determines
a differentiable function, equation (26) will be an implicit solution of (27).

So, if we can show that there s such a ¢y, we’ll be done. For this, we look to the
Implicit Function Theorem to help us out. Letting G/(z,y) denote the left-hand side
of (26), we compute

e® 4+ 1 + 5y

oG

%(‘7“7 y) = e +1+ y27 (28)
oG 4 3 2

a—y(x, y) = by —4y” + 3y° + 2y + 2zy. (29)

Both partials are continuous on the whole xy plane, so whatever point we choose for
(%0, Yo), the Implicit Function Theorem’s hypothesis that the partials be continuous
on some open rectangle containing (xg,yo) will be satisfied. Let’s look for a point
(20, yo) at which % is not 0. From our computation above,

oG

a—y(:r, y) = y(5y® — 4y® + 3y + 2 + 2x). (30)
So we definitely don’t want to choose yy = 0. But if we choose y, to be anything
other than 0, we can certainly find an xy for which the quantity inside parentheses

isn’t zero. Let’s make things easy on ourselves and choose yy = 1. Then
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5yo — 4ys +3yo +2+219 = 6+ 21
# 0 as long as xy # —3.

So if we take, for example, (z¢,y0) = (0,1), then %(xo,yo) # 0. For this choice
of (z0,0), we have G(xg,yo) = 3. The Implicit Function Theorem then guarantees
us that on some open z-interval containing 0, the equation G(z,y) = 3 implicitly
determines a differentiable function of z. By the first part of our analysis (the part
that involved implicit differentiation), this guarantees that the equation G(z,y) = 3
is an implicit solution of (27). So we have found a ¢, with the desired property. W

As you probably noticed, in this example our expressions (28)—(29) for the partial
derivatives of G' appeared also in (27). This is no accident. As students who have
taken Calculus 3 know, the multivariable chain rule implies that if we implicitly
differentiate the equation G(x,y) = ¢y with respect to x, we obtain the equation

oG 0G dy

ox * oy dr
With foresight, the author chose the DE (27) to be exactly the equation (31) for
G(z,y) equal to the left-hand side of (26). For most DEs, it will not be true that
there is a value of ¢y for which (26) is an implicit solution.

It may seem to you that the author cheated, by choosing essentially the only DE
for which the fact you were instructed to establish was actually a true fact. But you
will see later that equations of the form (31) actually come up a lot.

You may also have noticed, in Example 2.11, that we could have come up with
a whole lot of points (zg,yp) that “worked”, in the sense that the hypotheses of the
Implicit Function Theorem would have been met. All we needed was a point (xg, yo)
for which y(5y® — 4y? + 3y + 2 + 22)| 4oy 7 0- But “almost every” choice (2o, yo)
has this property; we just need yy # 0 and zy # — %(5y8’ — 4y2 + 3y + 2). For each
nonzero choice of yy, there’s only one “bad” choice of xy; every other real number is
a good choice of zy. So the ¢y’s for which our method shows that (26) is an implicit
solution of (27), are all the numbers G(xg, 1) we can get by plugging in “good”
choices of (9, o) (i.e. all choices with yg # 0 and zo # — 3(5yg — 4y¢ + 3yo + 2)).
We can expect this set of numbers to be a large subset of the range of G—perhaps
the whole range of G. A challenging question for you to think about is this: are there
any numbers ¢y for which (26) is not an implicit solution of (27)? Let’s strip away
the distracting complexity of the function G in (26) and pose the analogous question
for a much simpler G, the one in Example 2.10:

(31)

Question: Are there any numbers ¢y for which the equation

r+y+e¥ =c
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is not an implicit solution of (24)7 (Note that (24) is the equation (31) for the function
G defined by G(z,y) =z +y+e.) M

This question will not be answered in these notes; it is left as a challenge for the
student. We point out that the answer to such a question will not be the same for all
functions G that we could put on the left-hand side of “G(z,y) = ¢,”. For example,
if we take G(z,y) = 2* + y?, then only for ¢y > 0 is the equation G(x,y) = ¢ an
implicit solution of (15) (which is the equation (31) for this G, simplified by dividing
by 2). But if we take G(x,y) = x + y, then for every real number ¢, the equation
G(z,y) = ¢ is an implicit solution of the analogous differential equation, 1 + g—g =0,
as you can see easily by explicitly solving the equation x 4+ y = ¢; for y in terms of x.

The Implicit Function Theorem is one of the most important theorems in calcu-
lus, and it is crucial to the understanding of implicit solutions of differential equa-
tions. However, it does have its limitations: there are differential equations that have
implicitly-defined solutions that are not functions given by the Implicit Function The-
orem, as the next example shows.

Example 2.12 Consider the algebraic equation

22—y =0 (32)
and the differential equation
dy
—y—=0. 33
Ty (33)
Equation (32) is equivalent to y = +x. Thus on any interval I, equation (32) implicitly
determines two differentiable functions ¢ of x, namely ¢(z) = z and ¢(x) = —x. Both

of these are solutions of (33). Therefore (32) is an implicit solution of (33), and the
two functions ¢ above are implicitly-defined solutions of (33), on any interval.

The point (x,y) = (0,0) satisfies (32). But on no open rectangle containing the
point (0,0) does (32) uniquely determine y as a function of . Every such rectangle
will contain both a portion of the graph of y = x and a portion of the graph of y = —x
(see Figure 3; draw any rectangle enclosing the origin). Thus there are no intervals
I, containing 0 (our zy) and J; containing 0 (our yp) for which (12) holds.

Does this contradict the Implicit Function Theorem? No—the theorem says only
that there are I; and J; with the property (12) if the hypotheses of the theorem are met.
But in the current example, the function G for which (32) is of the form G(z,y) = ¢

oG

is given by G(x,y) = 2? — y*. Thus 9 (€, y) = —2y, and if we take (z9,0) = (0,0)

then %(xo, yo) = 0. One of the hypotheses of the theorem is not met, and therefore
we can draw no conclusion from the theorem. The two functions ¢ above are perfectly

good implicitly-defined solutions of (33); they just are not solutions that the Implicit
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Figure 3: The graph of 22 — y* = 0.

Function Theorem finds.

For most two-variable functions GG that we encounter in practice, the “bad points”
(x9,y0) at which the Implicit Function Theorem does not apply are of two types:
points at which the graph of G(z,y) = G(xg,yo) has a vertical tangent (as is the
case for the equations graphed in Figures 1 and 2), and points at which two or more
smooth curves intersect (as in Figure 3; in this simplest of examples the intersecting
curves are straight lines).

The equation 22 —y? = 0 has another feature that none of our previous examples
have illustrated. On any open z-interval containing the origin, the equation implic-
itly determines two differentiable functions of x, but four continuous functions of x:
o) = z,0(x) = —x, ¢(x) = |z|, and ¢(x) = —|z|. In all of our previous examples,
on any open interval the continuous implicitly-defined functions and the differentiable
implicitly-defined functions were the same.

2.3 Maximal and general solutions of derivative-form DEs

Definition 2.13 For a given F, the general solution of the differential equation
F(z,y, %) = 0 on an interval I is the collection of all solutions on /.

Often we want to talk about the collection of all solutions of a given differential
equation without pinning ourselves down to a specific interval /. For example, it may
happen we can write down a family of solutions, distinguished from each other by the
choice of some constant C', but for which the domain depends on the value of C' and
hence differs from solution to solution. This suggests making the following definition:
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Definition 2.14 (temporary) for a given F, the general solution of the differential

equation

dy

is the collection of all solutions of (34), where “solution” is defined as in the second
part of Definition 2.1. Said another way, the general solution of (34) is the collection
of pairs (I, ¢), where I is an open interval and ¢ is a solution of (34) on I.

We warn the student that the terminology “general solution” (with or without
the restriction “on an interval I”) is not agreed upon by all mathematicians (except
for linear equations in “standard linear form”, which we have not yet discussed in
these notes), for reasons discussed at the end of this subsection.

The student should not overlook our careful use of the articles “a” and “the” in
“a solution” (Definition 2.1) and “the general solution” (Definition 2.14). Use of the
definite article “the” implies that we are talking about something that is unique—i.e.
only one such thing exists. “The” should never be used by a writer (or speaker)
unless s/he has already given enough information for the reader (or listener) to know
that only one exists. Differential equations, even on a specified interval, virtually
never have just one solution (although initial-value problems usually do). The only
thing that “the solution” of a given DE can unambiguously mean is the collection
of all solutions. Thus, to the author of these notes, “the solution of equation (1)” is
synonymous with “the general solution of equation (1)”. To avoid misinterpretation,
in these notes we will not use the terminology “the solution” (of a given DE, in the
absence of an initial condition); we will always say either “a solution” or “the general

solution”.?

There is a problem with Definition 2.14 that we will discuss shortly. However,
in their first exposure to the subject, many students will not have the mathematical
sophistication needed to understand the problem or the way to fix it. Therefore in a
first course on differential equations, it is acceptable to use Definition 2.14
as the definition of “general solution”, and students in this author’s course
will not be penalized for doing so. Some students, however, may recognize (even-
tually, if not immediately) that there is a problem. The discussion below is for those
students, and any others who might be interested in what the problem is. Students
who are not interested, or have trouble understanding the discussion, may
skip to Example 2.19 and simply ignore the word “maximal” wherever it
appears.

To illustrate the problem, let us suppose that we are able to show for every
solution ¢ of some differential equation, there is a constant C' such that

9Not all mathematicians are equally picky about terminology, and the author cannot guarantee
that your instructor will so strictly separate the meanings of “a” and “the”, or will agree that the
only logically possible meaning of “the solution of a (given) DE” is the general solution of that DE.
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1
ba) = —— . (3)
Remembering that the domain of a solution of a DE is required to be an interval,
we look at equation (35) and say, “Okay, for each C' this formula gives two solutions,
one on (—oo,C) and (C,00).” But even this is not technically correct. These are
not the only two intervals on which equation (35) defines solutions. If ¢ is a solution
on (C,00), then it satisfies the DE at every point of this interval. Therefore it also
satisfies the DE at every point of (C,C + 1), at every point of (C' + 26.4,C' 4+ 93.7),
and on any open subinterval of (—oo,C') or (C, c0) whatsoever.
This example illustrates that the collection of pairs (I, ¢) referred to in Definition
2.14 has a certain redundancy. There is terminology that allows us to speak more
clearly about this redundancy:

Definition 2.15 Let ¢ be a function on an interval I and let /; be a subinterval of
I. The restriction of ¢ to I, denoted @[, , is defined by

¢|11 (x) = ¢(x) forallx € I .

(We leave ¢[, () undefined for z not in [;.) We say that a function ¢ is a restriction
of ¢ if it is the restriction of ¢ to some subinterval.

If ] is an interval containing I, and ¢ is a function on I whose restriction to I is
¢, then we call ¢ an eztension of ¢.1°

Equivalently: if NIN is an interval of which [ is a subinterval, and & and ¢ are
functions defined on [ and [ respectively, then

¢ is a restriction of ¢ <= the graph of ¢ is part of the graph of ¢

<= ¢ is an extension of ¢.

(The symbol “ <= " means “if and only if”.)

It may seem silly at first, and even outright confusing, to distinguish so carefully
between a function and its restriction to a smaller domain, but there are many times
in mathematics in which it is important to do this. For example, the sine function
does not have an inverse, but the restriction of sine to the interval [—7/2, 7/2] does,
and the inverse of this restricted function is the function we call sin~! or arcsin.

If a function ¢ is a solution of a given DE on some interval I then the restriction
of ¢ to any subinterval [; is also a solution. But of course, if we know the function

0The same definition applies even when the domains of interest are not intervals; e.g. for a
function ¢ with any domain whatsover, the restriction of ¢ to any subset of its domain is defined
the same way. But for functions of one variable, the DE student should remain focused on domains
that are intervals.
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¢, then we know every speck of information about ¢| 1,- Therein lies the redundancy
of Definition 2.14: the definition names a much larger collection of functions than is
needed to capture all the information there is to know about solutions of (34). We
will see below that we can be more efficient.

While we can always restrict a solution ¢ of a given DE to a smaller interval
and obtain a (technically different) solution, a more interesting and much less trivial
problem is whether we can eztend ¢ to a solution on a [arger interval. The extension
concept is always in the background whenever we talk about “the domain of a solution
of an initial-value problem”. When we say these words, it’s always understood that
we're looking for the largest interval on which the formula we're writing down is
actually a solution of the given [VP. This is the differential-equations analog of what
is often called the implied domain of a function represented by a formula, such as
f(z) = %, in Calculus 1 or precalculus courses. The implied domain of this function
fis (—00,0) U (0,00) (also frequently written as “{z # 0}”). However, if we are
talking about % as a solution of the IVP

dy 5 1
- _ 3) == 36
o= y(3) (36)

’ a solution of this IVP only on (0,00), not on the whole

7

then we would call “y = 2’
domain of the formula %

With these ideas in mind, we call a solution ¢ of a given DE (or initial-value
problem) on an interval I mazimal or inextendible if ¢ cannot be extended to any

open interval I strictly containing I, while still remaining a solution of the DE.

Example 2.16 All the functions ¢ below are different functions, even though we are
using the same letter for them.

e O(z) = %, 0 < x < 5, is a solution of di = —272, but not a maximal solution.

dx
It is also a solution of the IVP (36).

¢(x) =1, 2.9 <z < 16.204, is another solution of Z—Z = —272, and of the IVP
(36), but not a maximal solution.

e O(z) = %, 3.1 < x < 16.204, is another solution of g—z = —272, but it is neither
a maximal solution nor a solution of the IVP (36),

o ¢(x) =1, x € (0,00) is a maximal solution of g—‘z = —z72, and is the maximal
solution of the IVP (36).

o ¢(x) =1, x € (—00,0)is a different maximal solution of % = —z72. Tt is not

a solution of the IVP (36).

dy _ -2

e ¢(z) =1, z € (—o0,—V2) is another non-maximal solution of & = —z
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o ¢(z) =1 +37, x € (0,00) is yet another maximal solution of % = —z~2. It is

not a solution of the IVP (36).

Example 2.17 The maximal solutions of the differential equation Z—g = sec? v are

1 1
¢(r) =tanx +C, (n— 5)# <z < (n+ 5)#, n an integer, C a constant

(one maximal solution for each pair of values (n,C') with n an integer and C' real).

It can be shown that every non-maximal solution of a DE is the restriction of some
maximal solution of that DE.'' Thus the collection of maximal solutions “contains”
all solutions in the sense that the graph of every solution is contained in the graph of
some maximal solution. So, better than Definition 2.14 is this:

Definition 2.18 For a given F, the general solution of (1) is the collection of all
maximal solutions of (1).

(This definition supersedes Definition 2.14.)

Example 2.16 demonstrates, we hope, the economy gained by including the word
“maximal” in this definition. The student will probably agree that, even prior to
writing down Definition 2.18, maximal solutions are what we really would have been
thinking of had we been asked what all the solutions of “% = —272” are—we just
might not have realized consciously that that’s what we were thinking of.

Example 2.19 The general solution of Z—i = x may be written as

1
y= 5%'2 +C. (37)
In this context equation (37) represents a one-parameter family of maximal solutions
¢c, each of which is defined on the whole real line. Here C' is an arbitrary constant;
every real number C' gives one solution of the DE. We allow ourselves to write (37) as
short-hand for “the collection of functions {¢¢ | C € R}, where ¢ (z) = 22?2 + C”.
Example 2.20

e The general solution of
dy 2
—=—x°, >0 38
0 (38)
(meaning that we are interested in this differential equation only for z > 0) may
be written as

11Gaid another way, every solution can be extended to at least one maximal solution. Maximal
extensions always exist, but they are not always unique.
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1
y==+C, x>0, (39)
A

a one-parameter family of maximal solutions. Because the restriction x > 0 is
stated explicitly in (38), it is permissible to leave out the “z > 0” when writing
the general solution; we may simply write the general solution as

1

e The general solution of

dy -2
= = — 41
dx T (41)

with no interval specified, may also be written as (40)—i.e. it is permissible to
write it this way, in the interests of saving time and space. However, because
no interval was specified when the DE was written down, we must consider all
possible intervals. Therefore, in this context, equation (40) does not represent
a one-parameter family of maximal solutions; it represents two one-parameter
families of maximal solutions'?. Equation (40) is acceptable short-hand for

the union of the two families of functions )

{¢c | CeR}, {vc| CeR}
where (42)

¢C(£L’):%+C, x>0
and

Ye(r) =1+C, z<0. )

(The union of the two families means the collection of functions that are in one
family or the other.) The solution y = £ 46 on {z < 0} (the function i in the
notation of (42)) is no more closely related to the solution y = =46 on {z > 0}

12Many calculus textbooks, and especially integral tables, foster a misunderstanding of the in-
definite integral. By definition, for functions f that are continuous on an open interval or a union
of disjoint open intervals, “[ f(z)da” means “the collection of all antiderivatives of f”. If the im-
plied domain of f is an open interval, then this collection is the same as the general solution of
dy/dz = f(z). But we must be careful not to interpret formulas such as “[ 22 do = —z7* + C”
or “[sec?z dr = tanz + C” as saying that every antiderivative of 72 is of the form z=' + C on
the whole implied domain of the integrand x~2, or that every antiderivative of sec? z is of the form
tanz + C on the whole implied domain of the integrand sec® z.

The Fundamental Theorem of Calculus tells us that on any open interval on which a function f
is continuous, any two antiderivatives of f differ by an additive constant. (Equivalently, if F is any
single antiderivative of f on this interval, then every antiderivative of f on this interval is F + C for
some constant C.) It does not make any statement about antiderivatives on domains that are not
connected, such as the implied domain of f(x) = =2 or the implied domain of f(z) = sec? z.
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(the function @) than it is to the solution y = L + 7 on {& < 0} (the function
Y7) 5 in fact it is much less closely related. (The function )7 at least lies in the
same family as 1), where as ¢g does not.)

dy .2

Alternative ways of writing the general solution of 22 xr~° are
1 1
Yy=—-—+C,z>0} and {y=—+C,z <0} (43)
x x
and
1 1
Yy=—+Cp,z >0} and {y=~+Cyx <0}". (44)
x x

In (43), it is understood that, within each family, C' is an arbitrary constant, and
that the two C’s have nothing to do with each other. In (44), C} and Cy again
are arbitrary constants, and we have simply chosen different notation for them
to emphasize that they have nothing to do with each other. But all three forms
(40), (43), and (44) are acceptable ways of writing the general solution, as long
as we understand what they mean, and are communicating with someone else
who understands what they mean. These forms do not exhaust all permissible
ways of writing the general solution; there are other notational variations on
the same theme.

Example 2.21 The general solution of % = sec?  may be written as

y=tanz + C, (45)
or as
1 1 .
y=tanz +C, (n— 5)# <z <(n+ 5)#, n an integer, (46)
or as
1 1 .
y=tanz + C,, (n— 5)# <z <(n+ 5)#, n an integer, (47)
or in various other ways that impart the same information. As in the “% = g%

example, it is understood that C' and C), above represent arbitrary constants (i.e.
that they can assume all real values). But whichever of the forms (45)—(47) (or
other variations on the same theme) that we choose for writing the general solution
of g—g = sec?z, we must not forget that each of these forms represents an infinite
collection of one-parameter families of mazimal solutions, one family for each interval
of the form (n — 3)r < # < (n+ 3)m (n an integer).
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Example 2.22 The general solution of the separable equation

dy _ o

= — 48
=Y (48)
may be written as
! d y=0 (49)
e all =
(G Y ’
or as
! 0 (50)
= or =
(G Y ’

or in various other ways that impart the same information'®. In the given context,

the solution that is the constant function 0 may be written as “y = 0” (which, in this
context, is read “y identically zero”) or as y = 0. Since a solution of (48), expressed
in terms of the variables in (48), is function of x, the only correct interpretation of
“y = 0" in (50) is “y is the constant function whose value is zero for all 2”7, not “y
is a real number, specifically the number 0”. An instructor may sometimes write a
constant function using the identically-equal-to symbol “=”, especially in the early
weeks of a DE course, to make sure that students are absolutely clear what is meant;
at other times, when there is little possibility of confusion, (s)he may just use the
ordinary “=" symbol.

Note that for each C, the equation “y = ﬁ” represents not one maximal
solution, but two: one on the interval (C,00) and one on the interval (—oo, C').

This example is very different from our previous ones. For the DE “% = a2,
every maximal solution had domain either (—oo,0) or (0,00), and on each of these
intervals there were infinitely many maximal solutions. For the DE “j—g = sec?a”,
there were infinitely many maximal solutions on every interval of the form ((n —
$)m, (n+ 3)m). By contrast, for the differential equation (48):

1. The domain of every maximal solution is different from the domain of every

other.

2. For every interval of the form (a,c0) there is a maximal solution whose domain
1

is that interval, namely y = —.

3. For every interval of the form (—oo, a) there is a maximal solution whose domain
is that interval, namely y = ﬁ (The formula is the same as for solution on

(a, 00) mentioned above, but we stress again that the fact that as solutions of
a differential equation, “y = x—ia, xr >a’ and “y = x—ia, xr < a” are completely
unrelated to each other.)

13We do not discuss here how to figure out the general solution of this DE, since that is adequately
covered outside these notes.
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4. There is one maximal solution whose domain includes the domain of every other,
namely y = 0.

The general solution of (48) also exhibits another interesting phenomenon. The
way we have written the general solution in (49) and (50) isolates the maximal solution
y = 0 as not belonging to what appears to be a single nice family into which the
other maximal solutions fall (there is no value of C' for which the formula “y = ﬁ”
produces the constant function 0). But for C' # 0, writing K = %,

1 'K
r—C Clvr—1 Kz-—1"
In the right-most formula in (51), we get a perfectly good function—the constant

function 0—if we set K = 0. But this function is exactly what appeared to be the
“exceptional” maximal solution in (49). Thus, we can rewrite the general solution

(49) as
{y:%} and y:%. (52)

(51)

Here, K is an arbitrary constant, allowed to assume all real values, just as C'
was allowed to in (49). Writing the general solution this way, the two solutions with
formula y = % (one for x > 0, one for < 0) may be viewed as the exceptional
ones, with all the others—including the constant function 0—falling into the “%”
family. This illustrates that there be more than one way of expressing the collection
of all maximal solutions as what looks like a “nice family” containing most of the
maximal solutions, plus one or more maximal solutions that don’t fall into the family.

But this example also provides another instance of a theme to which we keep
returning: how easy it is to mis-identify a family of formulas with a family of solutions
of a DE. The maximal solutions described by {y = —=} in (49) do not form one
one-parameter family; they form two. Every value of C' corresponds to two maximal

solutions, one defined to the left of C' and one defined to the right'*. In (52), the

“family” {y = Kf_l} is even more deceptive: for each nonzero K, the formula y =
Kf_l yields two maximal solutions, one defined to the left of 1/K and one defined to

the right, while for K = 0 the formula yields just one maximal solution.

14 Note to instructors: Of course, the constant solution 0 may be viewed as the “C' = co” case of
“y = -=%”, and you may even wish to tell your students that. However, this does not mean that
the general solution is a one-parameter family parametrized by the one-point compactification of R,
i.e. the circle. Such a conclusion would be fine if we were talking the family of rational functions
defined by “y = ﬁ”, but we are not; we are talking about solutions of an ODE, for which the only
sensible domain is a connected one. The natural parameter-space for the collection of all maximal
solutions of (48) is not a circle, but a figure-8. In our next example, a logistic equation, the natural
parameter space is two simple closed curves joined along a common line segment whose endpoints
correspond to the constant solutions.
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In this example, one may reasonably decide that (49) is preferable to (52) as a
way of writing down the general solution. The constant solution y = 0 is distinguished
from all the others not just by being constant, but by being the only solution defined
on the whole real line. Furthermore, the collection of solutions described by {y =
—L-} is more “uniform” than is the collection described by {y = 5=}, in the sense
that in the first collection, every value of the arbitrary constant corresponds to two
maximal solutions, while in the second collection there is a value of the arbitrary
constant, namely 0, for which the given formula defines only one maximal solution.
However, in the next example, we will see two different ways of writing the general
solution, neither of which can be preferred over the other by any such considerations.

Example 2.23 The general solution of the separable equation

dy
7 — (1 - 53
o =yl —y) (53)
may be written as
C
= — d y=1. 4
{y e“”+C} and ¥ (54)

Using the same method as in the previous example, one sees that the same collection
of functions also be written as

{y:#} and y =0, (55)

Cez+1

(Here, the analog of the previous example’s K has been renamed to C.) In each case,
in the family in curly braces, the formula giving y(z) yields two maximal solutions
for C' < 0 and one maximal solution for C' > 0. The C' = 0 solution in (54) is the
constant function 0, which is the “exceptional” solution in (55). The C' = 0 solution
in (55) is the constant function 1, which is the “exceptional” solution in (54). The
situation is completely symmetric; neither of (54) and (55) can be preferred over the
other.

The last example illustrates that for nonlinear DEs there may be no singled-out
way to write the collection of all maximal solutions (or solutions on a specified inter-
val) of a nonlinear equation as a one-parameter family, or as several one-parameter
families, or as one or more one-parameter families of solutions plus some “exceptional”
solutions. Because of this, many authors prefer to use the terminology “general solu-
tion” only for linear DEs, and not to define the term at all for nonlinear DEs.'?

15 Note to instructors: This author, however, feels that too much is lost this way. It is important
for students to be able to know when they’ve found all solutions. This author has found that many
textbooks that avoid defining “general solution” for nonlinear DEs do not systematically address
the question “Have we found all solutions?” at all, or even make the importance of the question
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2.4 Algebraic equivalence of derivative-form DEs

In these notes we have defined open rectangles. You may also be familiar with open
disks: the open disk of radius € > 0 centered at (z¢,yp) is the set of points (x,y) a
distance less than e from (zg,yo) (equivalently, the set of points (z,y) that satisfy
the strict inequality /(z — x9)2 4+ (y — yo)? < €). More generally, a subset R of R?
is called an open set if for every point (xg,yo) € R, the set R contains the open disk
of some radius (possibly tiny), centered at (xg,yo). If you draw yourself a picture
you should easily be able to convince yourself that “open disk” and “open rectangle”
meet the definition of “open set”, so our terminology is self-consistent.®

Another term we will use for “open subset of R? ” is region'”.

Definition 2.24 We say that two derivative-form differential equations, with inde-
pendent variable z and dependent variable y, are algebraically equivalent on a region
R if one equation can be obtained from the other by the operations of (i) adding to
both sides of the equation an expression that is defined for all (z,y) € R '® | and/or

clear. This can reinforce the prevalent and unfortunate impression that the only thing one needs
to do in DEs is push symbols around the page by whatever sets of rules one is told for the various
types of equations, and that one does not need to question whether and/or why those rules yield all
the solutions.

This author feels that it is worthwhile to give the student a name for the collection of all solutions,
and to choose the name that is the most consistent with terminology that mathematicians use
throughout mathematics. By this criterion, “general solution” seems best to him.

Other DE instructors may have different conventions for use of the term “general solution”, but we
caution the instructor to be wary of using “general solution” to refer to a non-exhaustive collection
of solutions for which (s)he has produced a nicely-parametrized family of formulas. As the simple
examples 2.22 and 2.23 illustrate, the choice of which solutions should be considered part of a family,
and which should be considered exceptional, can be in the eye of the beholder, and can be an artifact
of method used to produce the solutions.

We mention, however, that there is an accepted definition of singular solution of an ODE. A
singular solution of an ODE is one “at every point of which the uniqueness of the solution of the
Cauchy problem for this equation is violated” (Encyclopedia of Mathematics, online edition, Springer,
http://eom.springer.de/s/s085610.htm). This definition provides a way to canonically separate
“exceptional” solutions from the rest, and some authors have used “general solution” to refer to the
collection of all solutions that are not singular. This happens to reproduce what we have called the
general solution in all the examples in these notes, for the simple reason that, like virtually every
DE shown students in a typical first course on ODEs nowadays, the DEs in our examples have no
singular solutions. But even for equations that do have singular solutions, it would seem preferable
to use the term generic for the other solutions, rather than general.

16For example, if R is the open disk of radius 1 centered at (0,0), and we take (xg,yo) = (0.99,0),
then the open disk of radius 0.005 centered at (xo,yo) is contained in R.

17The author is taking some liberties here. The usual definition of “region” is connected non-empty
open subset. The author did not want to distract the student with a definition of connected, and
felt that the student would understand from context that when “an open set in R?” is referred to
in these notes, it is understood that the set is non-empty, i.e. that it has at least one point.

18 Note to students: The expression is allowed to involve %, which is why we did not say “function

of z and y” here. If the expression does involve %, our requirement that it be defined for all (z,y) €
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(ii) multiplying both sides of the equation by a function of x and y that is defined
and nonzero at every point of R.

Note that subtraction of an expression is the same as addition of the negative of
that expression, so subtraction is an operation allowed in Definition 2.24, even though
it is not mentioned explicitly.

Example 2.25 The differential equations

Yy (56)
and
1 dy
yi—y) di &7)

are algebraically equivalent on the regions {(z,y) |y < 0}, {(z,y) |0 <y < 1},
and {(z,y) |y > 1}. However, they are not algebraically equivalent on the whole xy
plane.

Example 2.26 The differential equations

dy
—x)— =2 4 58
(y—2) =2y +do (58)
and
dy  2y+4x
i — (59)

are algebraically equivalent on the regions {(z,y) |y >z} and {(z,y) |y <z}, but
not on the whole zy plane.

Why this terminology? Mathematicians call two equations (of any type, not just
differential equations) equivalent if they have the same set of solutions. For example,
the equation 2z + 3 = 11 is equivalent to the equation 3z = 12. A general strategy
for solving equations is to perform a sequence of operations, each of which takes us
from an equation to an equivalent but simpler equation (or to an equivalent set of
simpler equations, such as when we pass from “(z — 1)(z —2) =0” to “c —1=0or
r—2=0").

R means that it is defined whenever (z,y) € R and any real number whatsoever is substituted for

dy

%- . . . . . .
Note to instructors: The latter requirement is more restrictive than necessary—for example, it

eliminates adding to both sides W, 1-— (%)2, or an expression like 4/ % + z + y that it is hard
to imagine ever arising in any DE that anyone would ever have an interest in solving
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But often, when we manipulate equations in an attempt to find their solution
sets, we perform a manipulation that changes the solution set.!® This happens, for
example, if we start with the equation 2® — 32> = —2x and divide by x, obtaining
r? — 312 = —2. In this example, we lose the solution 0. (The solution set of the first
equation is {0, 1,2}, while the solution set of the second is just {1,2}. For another
example, if start with the equation /& +4 = —3, and square both sides, we obtain
x4+ 4 =29, and hence x = 5. But 5 is not a solution of the original equation; v/5 + 4
is 3, not —3. Our manipulation has introduced a “spurious solution”, a value of x
that is a solution of the post-manipulation equation that we may think is a solution
of the original equation, when in fact it is not.

For this reason it is nice to have in our toolbox a large class of equation-
manipulation techniques that are guaranteed to be “safe”, i.e. not to change the
set of solutions. For differential equations, the operations allowed in the definition of
“algebraic equivalence” above are safe. The precise statement is:

If two differential equations are algebraically equivalent on a region R,
then the set of solutions of the first equation whose graphs are contained
in R, is the same as the set of solutions of the second equation whose
graphs are contained in R.

(60)

If the region R above is the whole zy plane, then the collection of all solutions
of the first equation—hence its general solution—is the same as the general solution
of the second equation. In this case, if R = R? is understood, we may restate
(60) more briefly as “Algebraically equivalent DEs have the same general solution,”
“Algebraically equivalent DEs have the same set of solutions,”, or “Algebraically
equivalent DEs are equivalent.” But on regions that are not all of R?, the briefer
wording must be interpreted more carefully to mean statement (60).

When we perform a sequence of algebraic operations in an attempt to solve a
differential equation, especially a nonlinear one, we are rarely lucky enough to end up
with a DE that is algebraically equivalent to the original one on the whole zy plane.
But usually, we maintain algebraic equivalence on regions that fill out most of the xy
plane, as in Examples 2.25 and 2.26 above.

To see why statement (60) is true, let us check that operation (ii) in Definition
2.24 does not change the set of solutions whose graphs lie in R. Let us suppose we
start with a (first-order) derivative-form DE of the most general possible form:

dy dy
Fl(xaya @) = FQ(xayJ @)

(Of course, by subtracting Fo(z, y, g—g) from both sides, we can put this in the simpler

(61)

form F(z,y, Z—i) = 0, but since we often perform manipulations on equations without

9Usually this is due to carelessness, but there are other times when we do not have much choice.
In those cases, we try to keep track separately of any solutions we may have lost or spuriously gained
in this step.
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first putting them in the simple form (1), we will illustrate the solution-set-doesn’t-
change principle for DEs that have not been put in that form.) The equation obtained
by multiplying both sides of (61) by a function h that is defined at every point of R
and is nonzero on R is

d d
h’(xay)Fl(xayad_i) = h’(xay)FZ(xayad_i) (62)
Suppose that ¢ is a solution of (61). Then for all z in the domain of ¢,

Fi(z, ¢(x), ¢'(x)) = Fa(z, d(x), ¢'(x)). (63)

If the graph of ¢ lies in R 2, then for all z in the domain of ¢, the point (z, $(x))

lies in R, hence in the domain of h. Therefore for all z in the domain of ¢, h(z, ¢(z))

is some number, and equality is maintained if we multiply both sides of (63) by this
number. Therefore

for all z in the domain of ¢. Hence ¢ is a solution of (62). Thus every solution of

(61) whose graph lies in R is also a solution of (62) whose graph lies in R.
Conversely, suppose that ¢ is a solution of (62) whose graph lies in R. Then (64)

is satisfied for all z in the domain of ¢. By hypothesis, h(z,y) # 0 for every point

(x,y) € R, so for each x in the domain of ¢, ﬁ is some number, and equality

is maintained if we multiply both sides of (64) ﬁy this number. Therefore (63) is
satisfied for all z in the domain of ¢, so ¢ is a solution of (61). Thus every solution
of (62) whose graph lies in R is also a solution of (61) whose graph lies in R.

This completes the argument that multiplying by h has not changed the set of
solutions whose graphs lie in R. The argument that operation (i) in Definition 2.24

does not change this set of solutions is similar, and is left to the student.

We mention that it is possible for two differential equations to be equivalent
without being algebraically equivalent. Performing operations other than those in
Definition 2.24 does not always change the set of solutions. But because they might
change the set of solutions, any time we perform one of these “unsafe” operations we
must check, by some other method, that we properly account for any lost solutions
or spurious solutions.

20In this argument we are talking about all solutions whose graphs lie in R, not just maximal
solutions whose graphs lie in R. (Students who did not read or did not understand the earlier
material on maximal solutions should ignore the part of the previous sentence after the comma.) If
there is a solution ¢ whose graph lies partly inside R and partly outside R, then there are z-intervals
I to which we can restrict ¢ and obtain a solution whose graph lies in R. All solutions obtained this
way are covered by our argument, as well as any maximal solutions whose graphs lie in R. (Students
who did not read or did not understand the material on maximal solutions should replace the second
half of the previous sentence with “as well as any solutions whose graphs lay entirely inside R to
begin with”.)
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Students should already be familiar with this fact from their experience with sep-
arable equations. For example, in passing from equation (56) to (57), we potentially
lose any solution whose graph intersects the horizontal line {y = 0} or the horizontal
line {y = 1}. Are there any such solutions? Yes: the two constant solutions y = 0
and y = 1, whose graphs happen to be exactly these two horizontal lines.

When we are dealing with separable equations 2 = g(z)p(y), and there is any
number yo for which p(yp) = 0, when we separate variables we don’t just potentially
lose solutions, we always lose solutions (unless we make an error later in the process).
For every number y, for which p(yo) = 0, the constant function y = g, is a solution
that separation of variables, carried out with no errors, cannot find. But fortunately,
it finds all the others (in implicit form).

We can see why in the context of Example 2.25. The right-hand side of (56) is
a function of y whose partial derivative with respect to y is continuous everywhere.
Therefore for every initial-condition point (xg,%o) in the xy plane, the fundamental
Existence and Uniqueness Theorem for initial-value problems applies, and so through
each such point there is the graph of one and only one maximal solution. If there
were a non-constant solution of (56) whose graph intersected the graph of the constant
solution y = 1 (the line {y = 1}), say at the point (o, 1), we would have a contra-
diction to uniqueness of the solution of the IVP with differential equation (56) and
with initial condition y(zy) = 1. Similarly, no non-constant solution of (56) can have
a graph that intersects the graph of the constant solution y = 0 (the line {y = 0}).
Therefore the graph of every non-constant solution lies entirely in one of the three
regions mentioned in Example 2.25. Since equations (56) and (57) are algebraically
equivalent on each of these three regions, the general solution of (57) is precisely the
set of all solutions of (56) other than the two constant solutions that we have already
accounted for.

Thus, if we manage to solve (57)—which we leave the student to do—and then
add to its general solution the two constant functions y = 0 and y = 1, we obtain all
solutions of (56).

Let us now look at the algebraic-equivalence concept for some linear DEs.

Example 2.27 The equations

d
d—i + 3y =sin (65)
and
d
e3xd—i + 3¢y = ¥ sinw (66)

are algebraically equivalent on the whole xy plane. The second equation can be
obtained from the first by multiplying by e3?, which is nowhere zero. Similarly, the
first equation can be obtained from the second by multiplying by e 3%, which is
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nowhere zero. W

The student familiar with integrating-factors will recognize that the €3* in the
example above is an integrating factor for the first equation. To solve linear DEs
by the integrating-factor method, the only functions we ever need to multiply by are
functions of x alone. Of course, every such function can be viewed as a function of
x and y that simply happens not to depend on y. More explicitly, given a function
one-variable function p, we can define a two-variable function i by f(z,y) = p(z).
If p(x) is nonzero for every x in an interval I, then fi(x,y) is nonzero at every (z,y)
in the region I x R (an vertical strip, infinite in the £y-directions). So we will add a
bit to Definition 2.24 to have language better suited to linear equations:

Definition 2.28 We say that two linear differential equations, with independent
variable x and dependent variable y, are algebraically equivalent on an interval I if
they are algebraically equivalent on the region I x R. This happens if and only if one
equation can be obtained from the other by the operations of (i) adding to both sides
of the equation a function of x that is defined at every point of the region I x R, or
y times such function of x, or Z—i times such a function of x; and/or (ii) multiplying
both sides of the equation by a function of x that is defined and nonzero at every

point of the interval 1.

Example 2.29 The equations

dy
I ATIES
T y=20 (67)
and
dy
52 2%y =0 68
xdx vy (68)

are algebraically equivalent on the interval (0, 00), and also on the interval (—oo,0),
but not on (—oo,00) or on any other interval that includes 0. (Thus, in accordance
with Definition 2.24, we do not simply call them “algebraically equivalent”.) The sec-
ond can be obtained from the first by multiplying by x?, which satisfies the “nowhere
zero” criterion on any interval not containing 0, but violates it on any interval that
includes 0.

The first equation can be obtained from the second by multiplying by 22, which
is not zero anywhere, but does not yield a function of x on any interval that contains

0. W

Example 2.30 The equations
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dy

— —2y=0 69
T =2 (69)
(the same equation as (67) and
dy
22 2y =0 70
et gey (70)

are algebraically equivalent on the interval (0, 00), and also on the interval (—oo,0),
but not on (—oo,00) or on any other interval that includes 0. In fact, the second
equation does not even make sense on any interval that includes 0. The second
equation can be obtained from the first by multiplying by 23, which is not zero
anywhere, but is not defined at x = 0, hence does yield a function that we can
multiply by on any interval that includes 0.

The first equation can be obtained from the second by multiplying by 3, which
is defined for all x, but violates the “nowhere zero” condition on any interval that
contains 0. W

In the context of linear DEs, equation (60) reduces to the following simpler
statement:
Two linear DEs that are algebraically equivalent
. . (71)
on an interval I have exactly the same solutions on I.

Two linear DEs that are not algebraically equivalent on an interval I may or may
not have the same set of solutions on /. When we manipulate a linear DE in such a
way that we “turn it into” an algebraically inequivalent DE, we run the risk that we
will not find the true set of solutions. The next example illustrates this trap.

Example 2.31 Find the general solution of

z——2y=0 (72)

(the same equation as (69) and (67)).
Since this is a linear equation, our first step is to “put it in standard linear form”
by dividing through by x. This yields the equation
dy 2
— ——y=0. 73
Y (73)

However, (72) and (73) are not algebraically equivalent on the whole real line, but
only on (—o00,0) and (0, 00). Equation (73) does not even make sense at x = 0, while
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(72) makes perfectly good sense there.?!

As the student may verify, equation (73) has an integrating factor u(z) = 272,

Putting our brains on auto-pilot, we multiply through by 72, and write
(Iny)’ = 0,
= /(ny)'dx = 0 dz,
= 2%y = C,
= y = Oz (74)

(Even worse than putting our brains on auto-pilot is to ignore warnings to learn
the integrating-factor method rather than to memorize a formula it leads to for the
general solution of a first-order linear DE in “most” circumstances. That formula has
its limitations and will also lead, incorrectly, to (74).)

Neither in the original DE (72) nor in (74) do we see any of the clues we are
used to seeing, such as a “%”, that warn us that there may be a problem with (74)
at © = 0. (There were clues in the intermediate steps, in which negative powers of
x appeared, but we ignored them.) The functions given by (74) form a l-parameter
family of functions defined on the whole real line, and it is easy to check that all
of them are solutions of (72). We have been taught that the general solution of a
first-order linear DE is a 1-parameter family of solutions—under certain hypotheses.
(We have ignored the fact that those hypotheses were not met, however.) Having
found what we expected to find, we write “y = Cz?” as our final, but wrong, answer.

Let us go back to square one and correct our work. The transition from equa-
tion (72) to (73) involves dividing by z, and therefore is not valid on any interval
that contains 0. These two equations are algebraically equivalent on (0,00) and on
(—00,0), and therefore have the same solutions on these intervals. But the general
solution to (72) might include solutions on intervals that contain 0, while the general
solution to (73) cannot.

We can still use the basic procedure that led us to (74); we just have to be more
careful with it. Auto-pilot will not work.

Because (73) makes no sense at © = 0, we must solve it separately on (—o0,0)
and (0,00). We can do the work for both of these intervals simultaneously, as long
as we keep track of the fact that that’s what we’re doing.

So suppose ¢ is a differentiable function on either on I = (0,00) or on I =
(—00,0), and let y = ¢(z). On I, 72 is an integrating factor. Multiplying both

21Standard terminology related to this problem is singular point. Generally speaking, a first-
order linear DE does not “behaves well” on an interval I if, when put in standard linear form
% + p(x)y = g(z), there is a point x¢ € I for which lim,_,,,+ p(x) = £o0 or limg_,,,— p(x) = £oo.
Such points xq are called singular points of the linear DE. The point « = 0 is a singular point of
both (72) and (73).
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sides of our equation on I by z7%, we find that ¢ is a solution of (73) if and only
if (z7%y)" = 0. Because [ is an interval, (z~%y)’ = 0 if and only if ™%y is constant.
Therefore:

e ¢ is a solution of (73) on (0, 00) if and only if there is a constant C' for which
172¢(x) = C; equivalently, for which ¢ is given by

o(z) = Ca’. (75)
e Exactly the same conclusion holds on the interval (—oo, 0).

Thus the general solution of (73) on (0, c0) is

y = Cz® x>0, (76)

while the general solution of (73) on (—o0,0) is

y=Cz? x<0. (77)

Now return to the equation we originally were asked to solve, (72), and suppose
that ¢ is a solution of this equation on (—oc,o0). (The argument we are about to
give would work on any interval containing 0.) Let ¢; be the restriction of ¢ to the
interval (0, 00), and let ¢, be the restriction of ¢ to the interval (—oo,0). Since (72)
and (73) are algebraically equivalent on (0, 00), ¢; must be one of the solutions given
by (76). Thus there is some constant C; for which ¢, (z) = Cyz?. Similarly, ¢ must
be one of the solutions given by (77), so ¢o(x) = Cya?.

Therefore ¢(x) = C1a? for x > 0, and @(x) = Cha? for x < 0. But we assumed
that ¢ was a solution on (—o00,00), so it also has a value at 0. We can deduce this
value by using the fact that the every solution of an ODE is continuous on its domain
(since, by definition, solutions are differentiable functions, and differentiable functions
are continuous). Therefore ¢(0) = lim,_,o ¢(x). Whether we approach 0 from the left
(using ¢(x) = Cya?) or the right (using ¢(z) = C1z?), we get the same limit, namely
0. Hence ¢(0) = 0.?2 Since 0 also happens to be the value of Cy2? at = 0 (as well as
the value of Cya? at z = 0), we can write down a formula for ¢ in several equivalent
ways, one of which is

[ Ciz* ifxz >0,
o) = { Cyx? if z <0, (78)

22 Another way to find the value of ¢(0) in this example is as follows. Since ¢ is differentiable on
its domain, the whole real line, ¢'(0) is some real number. Whatever this value is, when we plug
z =0 and y = ¢(x) into (72), the term “m%” becomes 0 x ¢'(0), which is 0. Hence ¢(0) = y(0) = 0.

While this second method works for (72), it does not work for (68)—which the student will later
be asked to solve—but the first method we presented does.
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(We could have chosen to absorb the “x = 0" case into the second line instead of the
first, or to use both “> 0” in the top line and “< 0”7 in the bottom line, since that
would not lead to any inconsistency. Or we could have chosen to write a three-line
formula, with one line for > 0, one line for £ = 0, and one line for x < 0. All of
these ways are equally valid; we just chose one of them.)

Conversely, as the student may check, every function of the form (78) is a solution
of (72). Therefore the general solution of (72) on (—oo, 00) is the two-parameter family
of functions given by (78), with C; and Cy arbitrary constants®*. This collection of
solutions contains all the solutions on every other interval, in the sense that the
general solution on any interval I is obtained by restricting the functions (78) to
the interval I. (For the student who read and understood the material on maximal
solutions: the two-parameter family (78) is the general solution of (72) as defined in
Definition 2.18.) W

We do not want the student to come away from the previous example with the
wrong impression. For the vast majority, if not 100%, of n'"-order linear DEs you
are likely to encounter in your first course on DEs, you will be shown how to solve
them (or asked to solve them) only on intervals for which the general solution is an
n-parameter family of functions. You are unlikely to see a two-parameter family of
functions as the general solution unless the equation is second-order. Example 2.31
is the exception, not the rule. But we wanted the student to see another example of
the perils of what can happen when algebraic equivalence is not maintained during
the manipulation of equations.

Algebraically inequivalent linear DEs do not always have different solution-sets.
The student should test his/her understanding of the example above by showing that
equations (67) and (68) have the same set of solutions.

2.5 First-order equations in differential form

Definition 2.32 A differential in the variables (x,y) is an expression of the form

M (z,y)dx + N(z,y)dy (79)

where M and N are functions defined on some region in R%2. We often abbreviate
this by writing (79) as just

Mdz + Ndy, (80)

23We warn the student that most textbooks apply the term “general solution” to the collection of
all solutions of a linear first-order DE on an interval only when that collection is a one-parameter
family.
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leaving it understood that M and N are functions of x and y. Also, another term
we will use for “open subset of R? 7 is region®* When a region R is specified, we call
Mdx + Ndy a differential on R.

The functions M, N in (79) and (80) are called the coefficients of dx and dy in
these expressions. W

The following definition provides an important source of examples of differentials.

Definition 2.33 (a) If F' is a differentiable function on a region R, and the variables
we use for R? are x and y, then the differential of F' on R is the differential dF
defined by

oF oF
dF = —d —dy. 81
Bz " + dy J (81)
(b) A differential Mdx + Ndy on a region R is called ezact if there is some

differentiable function F on R for which Mdz + Ndy =dF on R. W

Note that we have not yet ascribed meaning to “dz” or “dy”; effectively, they
are just place-holders for the functions M and N in (79) and (80). Similarly, so far
the expression “Mdx + Ndy” is just notation; its information-content is just the pair
of functions M, N (plus the knowledge of which function is the coefficient of dz and
which is the coefficient of dy).

You (the student) may have come across the noun “differential” in your previous
calculus courses. The sense in which we use this noun in these notes is more sophis-
ticated than the notion you probably learned there. There is a relation between the
two notions, but we are not ready yet to say what that relation is.

If Mdx + Ndy is a differential on a region R, and (xg,yo) is a point in R, we
call the expression M (zy, yo)dx + N (zo, yo)dy the value of the differential Mdx + Ndy
at (zo,yo). However, this “value” is not a real number; so far it is only a piece of
notation of the form “(real number times dz) + (real number times dy)”, and we still
have attached no meaning to “dz” and “dy”. The value of a differential at a point
is actually a certain type of wvector, but not the type you learned about in Calculus
3. (The type of vector that it is will not be described in these notes; the necessary
concepts require a great deal of mathematical sophistication to appreciate, and are
usually not introduced at the undergraduate level.)

24The author is taking some liberties here. The usual definition of “region” is connected non-empty
open subset. The author did not want to distract the student with a definition of connected, and
felt that the student would understand from context that when “an open set in R?” is referred to
in these notes, it is understood that the set is non-empty, i.e. that it has at least one point.
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We next define rules for algebraic operations involving differentials. These def-
initions are necessary, rather than being “obvious facts”, because so far differentials
are just pieces of notation to which we have attached no meaning.

Definition 2.34 Let R be an open set in R? and let M, N, M;, My, N;, N,, and f
be functions defined on R. (Thus Mdx + Ndy, M dz + Nydy, and Mydx + Nody are
differentials on R.) Then we make the following definitions:

1. Equality of differentials: Mjdx + Nidy = Msdx + Nody on R if and only if
Ml(xay) = M2(x7y) and Nl(‘ray) = Ng(l',y) for all (x,y) € R.

2. Abbreviation by omitting terms with coefficient zero:

Mdx = Mdx + Ody,
Ndy = 0dx+ Ndy.

3. Abbreviation by omitting the coefficient 1 (the constant function whose constant
value is the real number 1):

der = ldx,
dy = 1dy.

4. Insensitivity to which term is written first:
Ndy + Mdx = Mdx + Ndy.

5. Addition of differentials:

(Mydz + Nidy) + (Madz + Naody) = (My + Ms)dx + (Ny + Na)dy.
6. Subtraction of differentials:

(Mydx + Nydy) — (Maydz + Nody) = (My — My)dx + (N, — Na)dy.
7. Multiplication of a differential by a function:

f(Mdz + Ndy) = fMdz + fNdy.

(Here, the left-hand side is read “f times Mdxz+ Ndy”, not “f of Mdx+ Ndy”.
The latter would make no sense, since f is a function of two real variables, not
a function of a differential.)
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8. The zero differential on R is the differential 0dz+0dy, which we often abbreviate
just as “0”. (We tell from context whether the symbol “0” is being used to
denote the real number zero, the constant function whose value at every point is
the real number zero, or the zero differential. In the equation “Odx + Ody = 07,
context tells us that each zero on the left-hand side of the equation is to be
interpreted as the constant function with constant value 0, while the zero on the
right-hand side is to be interpreted as the zero differential?®>.

Note that our definition of subtraction is the same as what we would get by
combining the operations “addition” and “multiplication by the constant function
—17:

Note also that we do not define the product or quotient of two differentials. In
particular we don’t (yet) attempt to relate the differentials dz and dy to a derivative

d

2. (When we do relate them later, Z—z still will not be the quotient of two differentials.)

Finally, we are ready to bring differential equations back into the picture!

Definition 2.35 A differential equation in differential form, with variables (x,y), is
an equation of the form
one differential in (x,y) = another differential in (z,y). (82)

We write such an equation only when where there is some region R on which both
differentials are defined. When the region R is specified, we append “on R” to the
phrase “DE in differential form”, or insert it after “DE”. W

Example 2.36 Whenever we separate variables in a separable, derivative-form ODE,
we go through a step in which we write down a differential-form ODE, such as

ydy = e”du. (83)

25As a general rule, it’s a bad idea to use the same symbol to represent different objects, and
it’s usually a particularly awful idea to let the same symbol have two different meanings in the
same equation. We allow certain—very few—exceptions to this rule, in order to avoid cumbersome
notation, such as having three different symbols such “Or”, “Ogen,” and “Ogig,” fot the zero number,

zero function, and zero differential respectively.

41



A very important difference between a DE in derivative form and a DE
in differential form is that a DE in differential form has no “independent
variable” or “dependent variable”. The two variables are on an equal footing.
We do have a “first variable” and “second variable” (for which we are using the letters
x and y, respectively, in these notes), but only because we need to put names to our
first and second variables in order to specify the functions M and N (e.g. to write
a formula such as “M(x,y) = 2%*y”). Do not make the mistake of thinking that
whenever you see “z” and “y” in a DE, x is automatically the independent variable
and y the dependent variable. Also, even when it’s been decided that the letters x
and y will be used, there is no law that says x has to be the first variable and y the
second. In these notes we choose the conventional order so that the student will feel
on more familiar ground. But notice that if we were to choose different names for our
variables, and for the sake of being ornery write something like

N dX = eda,

you would not have a clue as to which variable to call the first—nor would it matter
which choice you made.
Here is the differential-form analog of Definition 2.24:

Definition 2.37 We say that two DEs in differential form are algebraically equivalent
on a region R if one can be obtained from the other by the operations of (i) addition
of differentials and/or (ii) multiplication by a function defined at every point of R
and is nowhere zero on R.

So, for example, each of the differential-form ODEs

27%ydz = tan(z + y)dy,

22%ydx — tan(x + y)dy = 0,

and

e®(22*ydx — tan(x + y)dy) = 0,

is algebraically equivalent to the other two on R? (and on any region in R?). On the
open set {(x,y) | x # 0} these equations are also algebraically equivalent to

z(22*ydr — tan(x + y)dy) = 0, (84)

but are not algebraically equivalent to (84) on the whole plane R?, since the plane
contains points at which x = 0.
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Note that by subtracting the differential on the right-hand side of (82) from both
sides of the equation, we obtain an algebraically equivalent equation of the form

Mdx + Ndy = 0.

Later, after we have defined “solution of a DE in differential form”, we will see that
algebraically equivalent equations have the same solutions. Therefore we lose no
generality, in our discussion of solutions of DEs in differential form, if we restrict
attention to equations of the form (86). (However, there is one instance in which it is
convenient to consider differential-form DEs that have a nonzero term on each side:
the case of separated variables, of which (83) is an example.)

In our discussion of derivative-form DEs, we frequently mentioned the graph of
a solution. The graph is an important curve. Its analog for differential-form DEs is
what we call solution curve, and it is even more important for differential-form DEs
than it is for derivative-form DEs. Below, we will define solution curve and solution
for differential-form DEs. In reading this material the student should pay careful
attention to whether or not the word “curve” appears after “solution”, since solution
curve and solution are very different gadgets, although they are related.

2.5.1 Solution curves of equations in differential form

In Calculus 2 and 3 you learned about parametrized curves (not necessarily by that
name, however). We review the concept and some familiar terminology, and introduce
what may be some unfamiliar terminology.

Definition 2.38 A parametrized curve in R? is an ordered pair of continuous real-
valued functions (f, ¢) defined on an interval (the parameter interval) I. The set

{(F(®),9(t)) [t € I} (85)

is called the range, trace, or image of the parametrized curve.

A curve in R? is a point-set C C R? that is the range of some parametrized
curve?,

Given a curve C, if (f,g) is a parametrized curve with trace C, then we say that

(f,9) is a parametrization of C or that (f,g) parametrizes C. W

In other words, a curve C is a point-set that is “traced out” by the parametric
equations

v o= f(t),
y = g(1),

26The “C” used in these notes for a curve is in a different font from the C that we use for a
constant.
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as t ranges over a parameter-interval; hence the terminology “trace”?’. is familiar

with it from precalculus and Calculus 1. The concept is the same here: the range
of (f,g), thought of as a single R?-valued function v (defined by v(t) = (f(t), g(t)))
rather than as a pair of R-valued functions. The word image is often preferred by
mathematicians, but it means the same thing as “range”.

Note that we are now using the letter I for a parameter-interval (“t-interval”),
not an x-interval.

Most of the time it is simpler to write “(x(¢),y(¢))” than to introduce the extra
letters f, g and write “(f(t),g(t))” for the point in the xy plane defined by “z =
f(t),y = g(t)”. We will often use the simpler notation (z(¢),y(¢)) when there is no
danger of misinterpretation. Thus we we also sometimes write “y(t) = (z(t), y(¢))”.

Note that in Definition 2.38, we do not require the interval / to be open. This is
so that we can present certain examples below simply, without bringing in too many
concepts at once that may be new to the student. Eventually, we will want to consider
only parametrized curves that have an open domain-interval, but we will not impose
that requirement just yet.

Example 2.39 Let z(t) = 2cost,y(t) = 2sint,t € [0,27]. Then for all t we have
z(t)2+y(t)? = 4, so the range of this parametrized curve lies along the circle 22 +y? =
4. Tt is not hard to see that every point on the circle is in the range of this parametrized
curve, so the (just-plain, or unparametrized) curve associated with this parametrized
curve is the whole circle 22 + y* = 4. Had we used the same formulas for z(t) and
y(t), but restricted ¢ to the interval [0, 7], the range would still have lain along the
circle 22 + y? = 4, but would have been only a semicircle. Had we used the same
formulas, but used a slightly larger, open interval, say (—0.1, 27+ 0.1), then we would
have obtained the whole circle again, with some small arcs traced-out twice.

Every curve has infinitely many parametrizations. For example, “z(t) = 2 cos Tt,
y(t) = 2sin7t,t € [0,27/7]” traces out the same curve as in first part of the example
above. So does “x(t) = 2cost?,y(t) = 2sint3,t € [—x'/3, 71/3]",

Definition 2.40 A parametrization (x(t),y(t)),t € I is called

e differentiable if the derivatives z'(t), y'(t) exist®® for all t € I;

2TThe word “trace” has several different meanings in mathematics, each of them completely un-
related to the others. The author is using the word reluctantly in these footnote not yet written

Z8When I contains an endpoint (i.e. I is of the form [a,b), [a,b], or (a,b], the first two of which
contain their left endpoints and the last two of which contain their right endpoints), then derivative at
an endpoint that I contains is interpreted as the appropriate one-sided derivative. Thus, if I contains
“do ot @7, s limy o+ SO Similarly if T

dt
contains a right endpoint b, then what we mean by “z'(b)”, or “% at b”, is lim;_,;- %

a left endpoint a, then what we mean by “z'(a)”, or
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e continuously differentiable if it is differentiable and z'(t), y/'(¢) are continuous in
t; and

e non-stop if it is differentiable and 2'(¢) and y'(¢) are never simultaneously zero
(i.e. there is no ¢y for which 2'(tp) = 0 = y/'(ty)).

Definition 2.41 A curve C in R? is smooth if for every point (xy,y) on the curve,
there is a number ¢y > 0 such that for all positive € < ¢y, the portion of C lying
inside the open square of side-length € centered at (zg,yo) admits a continuously
differentiable, nonstop parametrization, with domain an open interval. W

“Admits”, as used in Definition 2.41, is essentially another word for “has”. We
use the word “admits” because “has” might mislead the student into thinking that
the curve has already been dropped on his/her plate with a regular parametrization;
“admits a regular parametrization” does not lend itself to this misinterpretation.

The open-interval requirement at the end of Definition 2.41 implies that if a curve
contains an endpoint, then the curve does not meet our definition of “smooth curve”.
This is necessary in order to make various other definitions and theorems reasonably
short; curves with endpoints are messier to handle.

The student should convince him/herself that a circle meets our definition of
“smooth curve”.

Observe that Definition (2.41) uses a “windowing” idea similar to the one that
we used to talk about implicitly-defined functions in Section 2.2. We will later give an
equivalent definition of “smooth curve” that is even more reminiscent of that earlier
discussion.

FEvery curve admits parametrizations that are not continuously differentiable
and/or are not non-stop. Every smooth curve admits continuously differentiable
parametrizations that do not meet the “non-stop” criterion, as well as those that
do meet this criterion. But curves with corners, such as the graph of y = |z|, admit
no continuously differentiable, nonstop parametrizations. We can parametrize the
graph of y = |z| continuously differentiably—for example, by v(t) = (3, [t|*), with
parameter-interval (—oo, 0o)—but observe that for this parametrization, 2'(0) = 0 =
y'(0), so the parametrization is not non-stop. The corner forces us to stop in order
to instantaneously change direction.

The graph of y = |z| is one example of a non-smooth curve. Other examples of
non-smooth curves are:

e The letter X. You can draw this without your pencil leaving the paper, so it
satisfies the definition of “curve” (you are parametrizing it using time as the

45



parameter), but you'll find that you need to violate the “non-stop” criterion in
order to do so.

e A figure-8. The whole curve does admit a continuously differentiable, non-stop
parametrization, but the point (z,yy) at which the curve crosses itself causes
the definition of “smooth” not to be met. For small €, the portion of the curve
that lies in the disk of radius e centered at (zg,yo) is essentially an X, and has
the same problem that the X did.

Warning about terminology. Many calculus textbooks refer to a continously
differentiable, non-stop parametrization as a smooth parametrization. This usage of
“smooth” is unfortunate. It conflicts with the modern meaning of “smooth func-
tion” in advanced mathematics®. A preferable one-word term is “regular”, and the
only reason we are not using it in these notes is that the meaning of “regular” is
not self-evident; we did not want to present the student with extra terminology to
remember. “Regular” is flexible term that mathematicians use with a contextually
varying meaning, which usually is “having the most common features” or “having
no nasty or inconvenient features” (where the context determines what features are
important). The meaning of non-stop is self-evident (regarding ~'(¢) = (2/(t), y'(t))
as the velocity vector v(¢) at time ¢ associated with the parametrization, “non-stop”
is the condition that the velocity vector is not the zero vector for any t), but the
author of these notes has never seen it in any textbook?.

Now we get to the heart of the matter: unlike a DE in derivative form, a DE in
differential form is not an equation that is looking for a function. It is an equation
that is looking for a curve:

Definition 2.42 A solution curve of a differential equation

M(z,y)dx + N(z,y)dy =0 (86)

29Note to instructors: in differential topology and differential geometry, “smooth parametrization”
simply means “C* map” (from an open interval to R2, in the setting of these notes) for some pre-
specified k, usually 1 or co. There is no requirement that the parametrization be non-stop to be called
smooth. Even constant maps, whose images are a single point, are considered smooth parametrized
curves—and it is indispensable to the definition of “tangent space” to include these when one talks
about the collection of all smooth parametrized curves passing through a given point.

30Note to instructors: in differential topology and geometry, what we are calling here a (con-
tinuously differentiable) non-stop parametrization is called an immersion, so one would never see
“non-stop” in a research paper. Introductory courses and textbooks would be the only places to
use this term. When teaching about curves in Calculus 3, the author of these notes uses “non-stop”
as a separate condition, rather than part of the definition of“smooth parametrization”, because
(i) it is pedagogically useful, (ii) it is more self-explanatory than the calculus-textbook definition
of “smooth parametrization”, which has the awkward feature that (with this bad definition) all
smooth curves admit non-smooth parametrizations, (iii) the calculus-textbook definition of “smooth
parametrization” conflicts with the definition used by mathematicians who specialize in studying
smooth topological or geometric objects, and (iv) the term “non-stop” presents no such conflict.

46



on a region R is a smooth curve C, contained in R, for which some continuously
differentiable, non-stop parametrization (t) = (x(t),y(t)) of C satisfies

M(a(t), 9(0) 5 + N(a(0), y(1) L =0 (87)

for all ¢ in the domain-interval I of the parametrization. In this context, we call v a
parametrized solution of (86).%!

When no region R is specified, it is understood that the region of interest is
the interior of the common implied domain of M and N. Here, “common implied
domain” means the set of points at which both M and N are defined, and “interior”
means that we don’t count points that are on the boundary of the common domain®?.

For reasons too technical to discuss here, we will not define “maximal solution
curve” for a general differential-form DE. In a later section, we will define this term
under hypotheses that remove the technical difficulties.

As we noted previously, in a differential-form DE (86) there is neither an inde-
pendent nor a dependent variable; x and y are treated symmetrically. This symmetry
is preserved in (87), but in a surprising way: in (87), both x and y are dependent
variables! The independent variable is t—a variable that is not even visible in (86).

Algebraic equivalence (see Definition 2.37) has the same importance for DEs in
differential form that it has for DEs in derivative form. Suppose that two equations
Mydx + Nidy = 0 and Madx + Nody = 0 are algebraically equivalent on a region R .
Then there is a function f on R, nonzero at every point of R, such that My, = fM,
and Ny = fN;. If C is a solution curve of Midz + N1dy = 0 and (z(t),y(t)), t € 1, is
a continuously differentiable, non-stop parametrization of C, then

Mae(t), () o + No(a(t) (1))
dx dy
= (0,0 (M0, 4(0) o+ Nalal0),0(0)
Fa().y(8)) x 0
0.

Thus C is a solution curve of Mydx + Nody = 0, and (z(t),y(t)) is a parametrized
solution of this DE. Hence every solution curve of M;dx + Nidy = 0 is a solution
curve of Mydx + Nody = 0, and the same goes for parametrized solutions.

31The terminology “solution curve” and “parametrized solution” were invented for these notes;
they are not standard.

32 Note to instructor: The author has avoided giving a careful definition of “boundary” here, and
therefore of “interior”, to avoid distracting the student.
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Similarly, since f is nowhere zero on R, we have M; = iM, and N; = L1 N,.
The same argument as above, with the subscripts “1” and “2” interchanged and
with f replaced by %, shows that every solution curve or parametrized solution of
Mydx + Nody = 0 is a solution curve or parametrized solution of Midx + Ndy = 0.
Thus:

Two algebraically equivalent DEs in differential form have exactly the
same solution curves, and exactly the same parametrized solutions.

Observe that if My = fM; and Ny = fNy, but f is allowed to be zero somewhere
on R, then every solution curve (or parametrized solution) of Mjdx + Nidy = 0 is
a solution curve (or parametrized solution) of Mydx + Nody = 0, but the reverse
may not be true. (A similar statement holds for equations in derivative form.) Thus,
just as for derivative form, when we algebraically manipulate differential-form DEs,
if we multiply or divide by functions that can be zero somewhere, we can gain or
lose solutions, and therefore wind up with a set of solutions that is not the set of all
solutions of the DE we started with.

Definition 2.42 implies more about solution curves and parametrized solutions
than is obvious just from reading the definition.

To start with, equation (87) has a geometric interpretation. Let (z(t),y(t)) be
a continuously differentiable, non-stop parametrization of some solution curve C of
Mdx + Ndy = 0. Let v(t) = /(t) = 2'(¢t)i + y'(¢)j, where i and j are the standard
basis vectors in the zy plane. Then v(t), the velocity-vector function associated with
the parametrization, is tangent to the smooth curve C at the point (x(t),y(t)). We
can rewrite equation (87) using the dot-product you learned in Calculus 3:

(M (x(t),y(£))i+ N(z(t),y(t)j) - v(£) = 0. (88)

This says that, for each ¢, the vector v(t) is perpendicular to the vector M (z(t), y(t))i+

N(z(t),y(t))j. Thus for each point (x¢, yp) on C, the velocity vector at that point (i.e.
v(ty), where (x(to), y(to)) = (x0, yo)) is perpendicular to M (zq, yo)i + N(z¢, yo)j-

Suppose we have another regular parametrization of the same curve C. To

speak clearly of both parametrizations, we must temporarily abandon the notation

“(z(t),y(t))” in favor of (fi(t),g1(t)) (t € I1) and (f2(t), g2(t)) (t € I). At a given
point (zo, yo), the velocity vectors vy, ve coming from the two parametrizations will
be parallel, both being nonzero vectors tangent to C at that point. (L.e. if ¢;,t, are

such that (f1(¢1),91(t1)) = (20, y0) = (fa(t2), g2(t2)), then vo(ty) = evy(t;) for some
nonzero scalar ¢.) But then

(M (2o, yo)i + N(zo,40)j) - va(tz) = (M (xo,y0)i+ N(zo,y0)j) - cvi(ty)
¢ (M (zo,yo)i + N(zo,0)j) - v1(t1)
= c0

0.
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Since this holds for all points (z¢,yo) on C, it follows that the parametrization
z = fot),y = got) also satisfies (87).>3 Thus if one continuously differentiable,
non-stop parametrization of C satisfies (87), so does every other continuously dif-
ferentiable, non-stop parametrization of C. Therefore, even though Definition 2.42
requires only that there be some continuously differentiable, non-stop parametriza-
tion of C satisfying (87), once we know that even one continuously differentiable,
non-stop parametrization of C has this property, they all do. Said another way:

Every continuously differentiable, non-stop parametrization of a
solution curve of a differential equation Mdx + Ndy =0 is a (89)
parametrized solution of this equation.

This gets back to the statement we made just prior to Definition 2.42: that a DE
in differential form is looking for a curve. We did not say “parametrized curve”. A
curve is a geometric object, a certain type of point-set in the plane. The concept of
parametrized curve is needed to define which point-sets are curves and which aren’t.
It’s also needed to define many other features or properties of a curve, such as whether
a curve is a solution curve of a (given) DE in differential form. Any property that
is defined via parametrizations (such as being a solution curve of a DE in differen-
tial form) can potentially hold true for one parametrization but not for another. A
property defined in terms of parametrizations is intrinsic to a (smooth) curve—the
point-set traced out by any parametrization—if and only if the property holds true
for all continuously differentiable, non-stop parametrizations of that curve. These are
the properties that are truly geometric. What statement (89) is saying is that the
property “I am a solution curve of this differential-form DE” is an intrinsic, geometric

property.

Although the concepts of “solution of a DE in derivative form” and “solution
curve of a DE in differential form” are fundamentally different—the former is a func-
tion (of one variable); the latter is a geometric object, a smooth curve—they are still
related to each other. We will see precisely what the relation is in a later section
of these notes. For now, we mention just that the graph of any solution of a DE in
derivative form is a solution curve for some DE in differential form. The converse
is not true, because not every smooth curve in R? is the graph of a function of one
variable (consider the circle).

Many smooth curves in R? that are not graphs of one-variable functions can
still be expressed entirely or “mostly” as a union of graphs of equations of the form
“y = differentiable function of x.” But for many smooth curves, including those
that arise as solution curves of differential equations in differential form, this is often

33This can also be shown using the Inverse Function Theorem that you may have learned in
Calculus 1, plus the Chain Rule.
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neither necessary nor desirable®*. This is another fundamental difference between
derivative-form DEs and differential-form DEs.

Example 2.43 Consider the equation

xdx + ydy = 0. (90)

Suppose we are interested in a solution curve of this DE that passes through the point
(0,5). As the student may check, the parametrized curve

xz(t) = bHcost,
y(t) = bsint,

t € [0, 27], is a parametrized solution. The solution curve it parametrizes is the circle
2? + y? = 25, which is not the graph of a function of x. The circle is a beautiful
smooth curve, and as far as the DE (90) is concerned, there is no reason to exclude
any point of it.

But we run into trouble if we try to express this curve using graphs of differ-
entiable functions of x alone. The circle can be expressed “mostly” as the union of
the graphs of y = V25 — 22, —5 < 2 < 5, and y = —v/25 — 22, —5 < x < 5. (The
endpoints of the z-interval [—5, 5] must be excluded since -£+/25 — 22 does not exist
at = £5.) But we cannot get the whole circle.

2.5.2 The meaning of a differential

Now we are ready to ascribe meaning to a differential®®>. However, don’t worry if you
don’t understand the meaning given below. Understanding it is not essential to the
use of differentials in differential equations. In fact, in this section of the notes, there
are no differential equations—just differentials.

A differential Mdx + Ndy is a machine with an input and an output. What it
takes as input is a (differentiably) parametrized curve y. What it then outputs is a
function, defined on the same interval I as 7. If we write v(t) = (2(¢), y(¢)), then the

output is the function whose value at ¢ € I is M (z(t), y(t)) L + N(x(t), y(t)) L.

34We emphasize that this “neither necessary nor desirable” applies only to DEs that from the start
are written in differential form, such as in orthogonal-trajectories problems. When differential-form
equations are used as a tool to solve derivative-form equations, say with dependent variable y and
independent variable x, then it usually is desirable to write solutions in the explicit form “y =
differentiable function of ”—and your instructor may regard it as necessary to do this whenever it
is algebraically possible.

35Differentials can be understood at different levels of loftiness. The level chosen for these notes
is a higher level than the author has seen in Calculus 1-2-3 and introductory DE textbooks, but it
is not the highest level.
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We use the language “Mdx + Ndy acts on v’ to refer to the fact that the
differential takes v as an input and then “processes” it to produce some output.
Notation we will use for the output function is (Mdxz + Ndy)|vy]. This is the same
function that we expressed in terms of ¢ in the previous paragraph:

the function obtained
when the differential

acts on vy

A
- Y

(Mde + Nay)p] (1) = M(a(0), y(0) o+ Nl y) S (o1)

- o
v~

value of the function
(Mdz 4+ Ndy)[v]
at t

The notation on the left-hand side of (91) may look intimidating and unwieldy, but
it (or something like it) is a necessary evil for this section of the notes. It will not be
used much outside this section.

Let us make contact between the meaning of differential given above, and what
the student may have seen about differentials before. The easiest link is to differen-
tials that arise as notation in the context of line integrals in Calculus 3. (Students
who haven’t completed Calculus 3 should skip down to the paragraph that includes
equation (95), read that paragraph, and skip the rest of this section.) Recall that
one notation for the line integral of a vector field M (x, y)i+ N(x,y)j over a smooth,
oriented curve C in the xy plane is

/CM(LC, y)dx + N(z,y)dy. (92)

To see that the integrand in (92) is the same gadget we described above, let’s
review the rules you learned for computing such an integral:

1. Choose a continuously differentiable, nonstop parametrization v of C. Write
this as v(t) = (z(t),y(t)), t € [a,b].3® Depending on your teacher and textbook,
you may or may not have been introduced to using a single letter, such as v or
r, for the parametrization. But almost certainly, one ingredient of the notation
you used was “(z(t),y(t))”.

2. In (92), make the following substitutions: = = z(t),y = y(t),dz = Ldt,dy =
%dt, and [, = fab The integral obtained from these substitutions is

36The parametrization should also consistent with the given orientation of C, and to be one-to-
one, except that “y(a) = ~(b)” is allowed in order to handle closed curves. These technicalities is
unimportant here; the author is trying only to jog the student’s memory, not to review line integrals
thoroughly.
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[ et + ot } (99

3. Compute the integral (93). The definition of (92) is the value of (93):

dz @

[ 3ttty = [ {60.00)5 + Nao.p0) 5 a0

(You also learn in Calculus 3 that this definition is self-consistent: no matter
what continuously differentiable, non-stop parametrization of C you choose?”,

you get the same answer.)

A casual glance at (94) suggests that we have used the following misleading
equality:

“M(z9)do + N(o)dy = { MGl 0) 5 + Nl ) faer (09)
But that is not quite right. The left-hand side and right-hand side are not the same
object. Only after we are given a parametrized curve v can we produce, from the
object on the left-hand side, the function of ¢ in braces on the right-hand side.

In addition, in constructing the integral on the right-hand side of (94), we did
not confine our substitutions to the integrand of the integral on the left-hand side.
We made the substitution “fc — fab 7 as well. Attempting to equate pieces of the
notation on the left-hand side with pieces of the notation on the right-hand side
helps lead to a wrong impression of what is equal to what. Instead of making this
fallacious attempt, understand that (94) is simply a definition of the whole left-hand
side. The data on the left-hand side are reflected in the computational prescription
on the right-hand side as follows:

1. The right-hand side involves functions z(t),y(t) on a t-interval [a,b]. These
two functions and the interval [a, b] give us a parametrized curve v, defined by
v(t) = (x(t),y(t)). The curve C on the left-hand side tells us which +’s are
allowed: only those having trace C.

2. Once we choose such a 7, what is the integrand on the right-hand side? It is
exactly the quantity (Mdxz+ Ndy)[y](t) in (91). The effect of the “M (x, y)dx +
N(z,y)dy” on the left-hand side has been to produce the function (Mdx +
Ndy)[v] when fed the parametrized curve 7.

37Subject to the other conditions in the previous footnote
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Thus, the differential that appears as the integrand on the left-hand side is exactly
the machine we described at the start of this section.

There is one other topic in Calculus 3 that makes reference to differentials (if the
instructor chooses to discuss them at that time): the tangent-plane approximation
of a function of two variables. The differentials you learned about in that context
are not quite the same gadgets as the machines we have defined. They are related,
but different. To demonstrate the precise relation, there are two things we would
need to do: (1) restrict attention to exact differentials, and (2) discuss what kind of
gadget the value of a differential at a point—an expression of the form M (zy, yo)dz +
N(zg, yo)dy—is. This would require a digression that, in the interests of both brevity
and comprehensibility, we omit.

2.5.3 Existence/uniqueness theorem for DEs in differential form

Recall that an initial-value problem, with dependent variable y and independent
variable x, consists of a derivative-form differential equation together with an initial
condition of the form y(zy) = yo. The differential-form analog of an initial-value
problem is a differential-form DE together with a point (zy, yy) of the zy plane. The
analog of “solution of an initial value problem” is a solution curve of a differential-form
DE that passes through the given point (z¢,yp). In such a context we may (loosely)
refer to the point (zg,yy) as an “initial condition” or “initial-condition point”, and
to the combination “differential-form DE, together with point (xg,y)” as an “initial-
value problem in differential form”. But because there is neither an independent
variable nor a dependent variable in a differential-form DE, this terminology is not
as well-motivated as it is for derivative-form DEs, where the terminology stems from
thinking of the independent variable as time.

Just as for derivative-form IVPs, there is an Existence and Uniqueness Theorem
for differential-form IVPs, which we will state shortly. To understand what’s behind
a restriction that will appear in the statement of this theorem, let us look again at
equation (88). Suppose (xg, yp) lies on a smooth solution curve C of Mdx+ Ndy = 0.
If M(xo,yo) and N(xzg,yo) are not both zero, then w = M (g, y0)i + N(xo, yo)j is a
nonzero vector, and (88) tells us that the velocity vector at (zg, yy) of any continuously
differentiable, non-stop parametrization of C must be perpendicular to w. Hence w
completely determines the slope of the line tangent to C at (xy, o). This places a very
strong restriction on possible solution curves through (xg,yo): there is one and only
one possible value for the slope of their tangent lines.

But if M (xo,yo) and N(xo,yo) are both zero, then M (z, yo)i+ N(xo,yo)j is the
zero vector, and every vector is perpendicular to it. Said another way, if (z(t), y(t))
is a parametrization of any smooth curve passing through (xg, o), say when ¢t = t,
then (88) is satisfied at t = ¢y, and so is (87). There is no restriction at all on the
slope!

Therefore at such a point (zg,yo), in general we cannot expect solutions of the
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differential equation Mdx+Ndy = 0 to be as “predictable” as they are when M (¢, yo)
and N (zo, yo) are not both zero. In this sense, the points (g, yo) at which M (x¢, yo)
and N (zo,yo) are both zero are “bad”, so we give them a special name:

Definition 2.44 A point (xg,yo) is a singular point of the differential Mdx + Ndy if
M (o, yo) =0 = N(zo, o). o

Recall that a derivative-form DE, with independent variable z and dependent
variable y, is said to be in standard form if the DE is of the form

Y= ) (96)

If the graph of a solution of (96) passes through (z¢, o), then the slope of the graph
must be f(zy,yp). This is true even if the IVP

L=y, vlm) =vo (97)

has more than one solution (which can happen if the hypotheses of the Existence and
Uniqueness Theorem for derivative-form IVPs are not met, e.g. if g—g is not continuous
at (zo,4o)). So in some sense, a singular point (o, yo) of a differential Mdx + Ndy is
a worse problem for the differential-form IVP “Mdxz + Ndy = 0 with initial condition
(20, Y0)” than we ever see for the derivative-form IVP (97).

It is difficult to define “maximal solution curve” for an equation Mdx+ Ndy = 0
on a region in which Mdx + Ndy has a singular point. But in regions free of singular
points, there are no technical difficulties. We make the following definition3:

Definition 2.45 Let R be a region in which the differential Mdx + Ndy has no
singular points. A solution curve C of the equation Mdx + Ndy = 0 is mazimal in R
if C is contained in R and either

1. Cis a closed curve (i.e. C has a continuously differentiable, non-stop paramet-
rization 7, with domain a closed interval [a, b], for which v(a) = (b)), or

2. Cis an “open curve without endpoints” (i.e. C has a continuously differentiable,
non-stop parametrization with domain an open interval,) and C is not a subset
of another solution curve in R of the same DE. W

38The terminology “solution curve that is maximal in a region” in Definition 2.45 was invented
for these notes; the author does not know whether it is standard.
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Less formally, a solution curve is maximal in R if it is inextendible to a larger
solution curve in R. A smooth closed curve never has any directions in which it
could be extended (without violating the definition of “smooth curve”), but an open
curve without endpoints may or may not be extendible. For example, the graph C;
of y = 1/x in the open first quadrant R is an open curve without endpoints that is
inextendible because it already “runs off to infinity in both directions”. It is a solution
curve of the equation ydx + xdy = 0 that is maximal in R. (This differential has a
singular point at the origin, but the origin is not in R, so Definition 2.45 applies.)
The portion Cy of C; for which 1 < x < 2 is a solution curve of the same DE, but it is
not maximal in R, since it can be extended to the larger solution curve C; (of course,
it can be extended to solution curves of intermediate size).

We can now state the differential-form analog of the Existence and Uniqueness
Theorem for derivative-form initial-value problems:

Theorem 2.46 Suppose M and N are continuously differentiable functions on an
open region R in R%, and that Mdx + Ndy has no singular points in R. Then for
every (zo,Yyo) € R, there exists a unique mazximal solution curve of Mdx + Ndy = 0
passing through (xg, yo)-

Like the analogous theorem for derivative-form initial-value problems, this the-
orem gives sufficient conditions under which a desirable conclusion can be drawn,
not necessary conditions. There are differential-form equations Mdx + Ndy = 0 that
have a unique maximal solution curve through a point (zy, y9) even though (xg,yo) is
a singular point of the differential. But there are also differentials for which M and
N are continuously differentiable in the whole xy plane but are both zero at some
point (xg,yo), and for which the equation Mdx + Ndy = 0 has no solution curve
through (zo, ), or several maximal solution curves through (zo,yp), or infinitely
many maximal solution curves through (zo, yo).

For ezact differentials, singular points are familiar to students who’ve taken Cal-
culus 3, but under another name:

Example 2.47 Suppose Mdx+ Ndy is exact on a region R, and let F' be a function

on R for which Mdx + Ndy = dF. Then M = ‘Z—I; and N = %—5. Hence (using the

mathematician’s notation “ <= "), for a given point (x¢,yo) € R,

(20, o) is a singular point of dF

<  M(x0,y0) = 0= N(x0, o)
oOF oF

— %(%ayo) =0= 8—y(900,y0)

<

(20, o) is a critical point of F.

Thus, the singular points of dF' are exactly the critical points of F'.
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2.5.4 Solutions (as opposed to “solution curves” or “parametrized solu-
tions”) of DEs in differential form

Definition 2.48 An equation

G(z,y) =0 (or G(x,y)= any real number c) (98)

is a solution of a differential-form equation

M (z,y)dx + N(z,y)dy =0 (99)

on a region R if

(i) the portion of the graph of (98) that lies in R contains a smooth curve, and

(ii) every smooth curve in R contained in the graph of (98) is a solution curve of
(99).

If R = R? then we usually omit mention of the region, and say just that (98) is
a solution of (99).

If Mdz+ Ndy has no singular points in R, then a solution (98) is called mazimal
in R if its graph is a solution curve of Mdxz + Ndy = 0 that is maximal in .

Observe that there is a certain structural similarity between Definition 2.4 and
Definition 2.48 (“implicitsolutions”, later re-named “implicit solutions” in Definition
2.5, of a derivative-form DE). In both definitions, the same object—an equation of the
form (98)—is being given a solution-related name (“implicit solution” in the setting
of derivative-form DEs, “solution” in the setting of differential-form DEs). In each
definition there are two criteria to be met, of this form:

(i) there is at one object with a certain property, say Property X, and
(ii) every object with Property X also has some other property related
to another type of solution.

We will elaborate on this similarity later.
Example 2.49 The circle with equation

2%+ y® = 53 (100)

is a solution of

x dv+ydy=0. (101)

Since the only singular point of « dx + y dy is the origin, which does not lie on
the graph of (100), the equation z? 4+ y* = 53 is a solution of (101) that is maximal
in the region {R? minus the origin}.
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Example 2.50 The equation

xy =1

is a solution of

ydx + xdy = 0. (102)

The graph, a hyperbola, consists of two maximal solution curves that are maximal in
the region {R? minus the origin}. (Just as in the previous example, the origin is the
only singular point of the differential.) One of the maximal solution curves admits
the continuously differentiable, non-stop parametrization z(t) = ¢, y(t) = %, t €
(0, 00), while the other admits the continuously differentiable, non-stop parametriza-
tion z(t) =t, y(t) = 1, t € (—o0,0).

More generally, for every real number C', the equation

xy =C

is a solution of the same DE (102). For most C, the graph is a hyperbola, but the
case C' = 0 is exceptional. The graph of

zy =0 (103)

is a pair of crossed lines, the z- and y-axes. Note that this graph is not a smooth curve,
nor is it the disjoint union of two smooth curves the way a hyperbola is (“disjoint”
meaning that the two curves have no points in common). We can verify that (103) is
indeed a solution of (102) by observing that the parametrized curves z(t) = t,y(t) =
0, t € R (a continuously differentiable, non-stop parametrization of the z-axis) and
z(t) = 0,y(t) =t, t € R (a continuously differentiable, non-stop parametrization of
the y-axis) both satisfy

dx dy
t)— t)— =
y(0) 5+ (1)

So we can express the graph of zy = 0 as the union of two solution curves of (102)—
the graph of y = 0 and the graph of x = 0—but, unlike for the graph of zy = C, with
C # 0 we cannot do it without having the two solution curves intersect. The source

of this difference is that only for C' = 0 does the graph of zy = C contain (0,0), a
singular point of ydz + zdy. W

The next example is very general. It is key to understanding the differential
equations that are called ezact.
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Example 2.51 (Exact equations, part 1) Suppose Mdz + Ndy is an exact dif-
ferential on a region R (see Definition 2.33), and let F' be a differentiable function on
R for which Mdx + Ndy = dF. Then (86) becomes

or oF

— d — dy = 0. 104

oz " * dy J (104)
Suppose that C is a solution curve of (104), and that ¢(t) = (z(t),y(t)), t € I, is a

continuously differentiable parametrization of C. Then (87) says

%(x(t), y(t))fl—f + z—];(x(t), y(t))% =0. (105)

By the Chain Rule, the left-hand side of (105) is just % F(x(t),y(t)). Thus, (87)
simplifies, in this case, to
d

EF(x(t),y(t)) =0 foralltel. (106)

Since [ is an interval, this implies that F'(z(t),y(t)) is constant in ¢. Thus, for every
parametrized solution (z(t),y(t)) of the equation dF = 0 on R, there is a (specific,
non-arbitrary) constant ¢ such that

F(z(t),y(t)) = co (107)

for all ¢ € I. This implies that every solution curve of (104) in R is contained in the
graph of (107) for some value of the constant cy.
Now, fix a number ¢y, and consider the equation

F(z,y) = co. (108)

Is this equation a solution of (104) in R, according to Definition 2.487 The answer
is yes, provided that criterion (i) of the definition is met. If this criterion is met, let
C be a smooth curve in R that is contained in the graph of (108). Let 7 be such a
continuously differentiable parametrization of C, and write v(¢) = (x(t),y(t)), t € I.
Since every point of C lies on the graph of (108), equation (107) is satisfied for all
t € I. Differentiating both sides of (107) with respect to ¢, we find that (106) is
satisfied. But, by the Chain Rule, the left-hand side of (106) is exactly the left-hand
side of (105), so (105) is satisfied. Therefore C is a solution curve of (104). Hence
criterion (ii) of Definition 2.48 is met, so (108) is a solution of (104) in R. M

Defining “general solution” for equations in differential form is trickier than it
is for derivative form. One reason is that in differential form we have the notions
both of solution curve—a geometric object—and solution (in the sense of Definition
2.48)—an algebraic equation (i.e. a non-differential equation). The other reason is
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that for differential-form DEs, some of the problems caused by singular points have
no analog in derivative-form DEs. We will use the following definition:

Definition 2.52 3% The general solution of a differential-form equation

Mdz + Ndy = 0 (109)

in a region R is the collection of all solution curves in R.

We call a collection of algebraic equations in = and y the general solution of (109)
in R (or on R), in implicit form, if

(i) each equation in the collection is a solution in the sense of Definition 2.48,

(ii) every solution curve of (109) in R that does not pass through a singular point
of Mdx 4+ Ndy is contained in the graph of some equation in the collection, and

(iii) every solution curve of (109) in R, whether or not it passes through a singular
point of Mdx+ Ndy, is contained in the union of graphs of finitely many or countably
many*? equations in the collection.

When no region R is mentioned explicitly, it is assumed that R is the common implied
domain of M and N. W

We will explain the reason for criterion (iii) later.

Example 2.53 (Exact equations, part 2) Suppose we are given a differential-
form equation (109) that is exact on a region R, and we have found a function F'
such that Mdx + Ndy = dF on R. Then Example 2.51 shows that the general
solution of (104) on R, in implicit form, is the collection of equations

F(z,y) =C, (110)

where C' is a “semi-arbitrary” constant: the allowed values of C' are those for which
the graph of (110) contains a smooth curve in R. W

Above, if we assume more about the differential, it is easier to tell which C’s are
allowed:

39This definition was invented for these notes; it is not standard.

40The set N of natural numbers {1,2,3,...} is an infinite set that is called countable, or countably
infinite. More generally, the empty set and any set that can be indexed by a subset of N (for
example, a collection of three curves Cy,Cs,Cs, or an infinite collection of curves {C,}22,) is called
countable, and we say it has countably many elements. Every finite set is countable, so the phrase
“finitely many or countably many” is redundant, but the author nonetheless wanted the student to
see “finitely many” explicitly in Definition 2.52. Not every infinite set is countable; the set of all
real numbers is an uncountable set.
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Example 2.54 (Exact equations, part 3) In the setting of Example 2.53, assume
additionally that M and N (:g—i and %—1;, respectively) are continuously differentiable
in R, and that Mdx + Ndy has no singular points (equivalently, F' has no critical
points) in R. We claim that in this case, the general solution of (104) on R, in implicit
form, is (110), but where the allowed values of C' are those for which the graph of
(110) contains even a single point of R. Equivalently, the set of allowed values of C
is the range of F' on the domain R.

To see that this is the case, it suffices to show that if, for a given C', the graph
of (110) contains a point (zo,y) of R, then the graph contains a smooth curve in R.
So, with C held fixed, assume there is such a point (zy,yp). Since we are assuming
that F' has no critical points in R, the point (xg, yo) is not a critical point of F, so at

least one of the partial derivatives 4= (g, yo), %—5(:}:0, Yo) is not zero. Then:

o [f %—z(xo, Yo) # 0, then, since we are assuming that ?)_l; and %—I; are continuous on
R, we can apply the Implicit Function Theorem (Theorem 2.3) to deduce that
is an open rectangle I; x J; containing (xg, 3o), and a continuously differentiable
function ¢ with domain I; such that the portion of the graph of (108) contained
in I; x J; is the graph of y = ¢(x), i.e. the set of points {(z,d(x)) | x € I,}.
This same set is the trace of the parametrized curve given by

{ zgg:;(t) }, tel.

This parametrized curve + is continuously differentiable, and it is non-stop since
‘;—f =1 for all £ € I;. Hence the trace of v is a smooth curve contained in the
graph of (110). Since (z9,yo) € R, and R is an open set, a small enough segment

of this curve, passing through (xg, yo), will be contained in R.

o If g—i(xg, Yo) # 0, then (reversing the roles of x and y in the Theorem—e.g. by
defining F(x,y) = F(y, x)), the Implicit Function Theorem tells us that there is
an open rectangle I; x J; containing (xg, 3o), and a continuously differentiable
function ¢ with domain J; such that the portion of the graph of (108) contained
in I; x J; is the graph of x = ¢(y), i.e. the set of points {(¢(y),vy) | y € J1}.
This graph is exactly the trace of the parametrized curve 7 given by

{ z(t) = ¢(t) } te g,

As in the previous case, 7 is continuously differentiable and non-stop. Hence
the trace of + is again a smooth curve contained in the graph of (110), and

again a small enough segment of it, passing through (xg, o), will be contained
in . W
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Example 2.55 Consider again the DE from Example 2.49,

xdx + ydy = 0. (111)

The left-hand side is the exact differential dF (on the whole plane R?), where
F(z,y) = (2> +y?). The function F has only one critical point, (0,0), and the
functions M (z,y) = x and N(z,y) = y are continuous on the whole zy plane. So if
we let R = {R? minus the origin}, there are no critical points in R, and Example 2.54
applies. For every C > 0, there is a point in R for which %(:1:2 +y?) = C. Therefore
the general solution of zdx + ydy = 0 in R, in implicit form, is

1
§(x2+y2) =C, C>0,

which we can write more simply as

?+yP=0C, C>0. (112)

The graph of each solution is a circle. The collection of these circles is what we call
the general solution of (111) in R (according to Definition 2.52), and the general
solution in R fills out the region R.

If we look at (111) on the whole zy plane rather than just R, then Example 2.54
no longer applies (because of the critical point at the origin), but Example 2.53 still
applies. From the above, every point of the xy plane other than the origin lies on
a solution curve with equation z? + y?> = C with C > 0. For C' = 0, the equation
“F(x,y) = C” becomes x> + y?> = 0. The graph of this equation is the single point
(0,0), and contains no smooth curves. For C < 0, the graph of z? +y? = C is empty.
Hence the general solution of (111) in implicit form, with no restriction on the region,
is the same as the general solution on R in implicit form, namely (112). H

Example 2.56 Consider again the DE from Example 2.50,

ydx + xdy = 0. (113)

The left-hand side is the exact differential dF (on the whole plane R?), where
F(z,y) = zy. The function F' has only one critical point, (0,0), and the functions
M(z,y) = y and N(z,y) = x are continuous on the whole zy plane. So, as in the
previous example if we let R = {R? minus the origin}, there are no critical points
in R, and Example 2.54 applies. This time, for every C' € R there is a point in R
for which xy = C. Therefore the general solution of ydx + xdy = 0 in R, in implicit
form, is

xy = C, (114)

where C'is a “true” arbitrary constant—every real value of C' is allowed.
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Note that for C' # 0, the graph of zy = C consists of two solution curves (the
two halves of a hyperbola) that are maximal in R. For C' = 0, there are four solution
curves that are maximal in R: the positive x-axis, the negative x-axis, the positive
y-axis, and the negative y-axis. The general solution of (113) (without the words “in
implicit form”) is the collection of all these half-hyperbolas and the four open half-
axes circles is what we call (111) in R (according to Definition 2.52). The general
solution in R again fills out R.

If we look at (113) on the whole xy plane rather than just R, then from the
preceding, the only point we do not yet know to be on a solution curve is the origin.
But, as we saw in Example 2.50, the origin is on two inextendible solution curves: the
x-axis and the y-axis. So the general solution (without the words “in implicit form”,
and with no restriction on the region) is the set of the half-hyperbolas noted above,
plus the z-axis and the y-axis. The general solution of (113) in implicit form, with no
restriction on the region, is again (114). But in contrast to Example 2.55, this time
the general solution fills out the whole plane R?. I

Students who’ve taken Calculus 3 have studied equations taht are explicitly of
the form “F(xz,y) = C” before. For a given constant C' and function F, the graph of
F(z,y) = C is called a level-set of F. (Your calculus textbook may have used the
term “level curve” for a level-set of a function of two variables, because most of the
time—though not always—a non-empty level-set of a function of two variables is a
smooth curve or a union of smooth curves.*!) A level-set may have more than one
connected component, such as the graph of xyy = 1: there is no way to move along the
portion of this hyperbola in the first quadrant, and reach the portion of the hyperbola
in the third quadrant. Our definition of “smooth curve” prevents any level-set with
more than one connected component from being called a smooth curve. However, it
is often the case that a level-set is the union of several connected components, each of
which is a smooth curve. From Examples 2.53 and 2.54 we can deduce the following:

41 Note to students. This is true provided that the second partial derivatives of the function exist
and are continuous on the domain of F'. The definition of “most of the time” is beyond the scope
of these notes. However, one instance of “most of the time” is the case in which there are only
finitely many C’s for which the graph of F'(z,y) = C is a non-empty set that is not a union of one
or more smooth curves. For example, for the equation z2 + y> = C, only for C = 0 is the graph
both non-empty and not a smooth curve.

Note to instructors: The “most of the time” statement is a combination of the Regular Value
Theorem and Sard’s Theorem for the case of a C? real-valued function F' on a two-dimensional
domain. The Regular Value Theorem asserts that if C' is not a critical value of F (i.e. if F~1(C)
contains no critical points), then F~1(C) is a submanifold of the domain, which for the dimensions
involved here means “empty or a union of smooth curves”. Sard’s Theorem asserts that the set of
critical values (not critical points!) of F' is nowhere dense.
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If F has continuous second partial derivatives in the region )
R, then the general solution of dF' =0 on R (see first sentence of Defini-
tion 2.52) 1S the set of smooth curves in R that are contained in
level-sets of F'.

If we additionally assume that F' has no critical points (115)
in R, then the general maximal solution of dF =0 on R—i.e.
the collection of solution curves that are maximal in R—is
the collection of connected components of level-sets of F' in R.

(See “Some cautionary notes on our terminology”, item 1, later in this section.) J

Neither of these statements is an “if and only if”. For example, the function
F(z,y) = xy has a critical point at the origin, but the general solution of dF' = 0 is
still the set of smooth curves in R? that are contained in level-sets of F'. (One of these
smooth curves is the z-axis, one is the y-axis, and the others are half-hyperbolas.)
For an example of a level-set that contains smooth curves, but is not a union of
smooth curves (i.e. has a point that’s not contained in any of the smooth curves in
the level-set), see Example 2.59 later in this section.

The next example (in which the DE is not exact), is included to illustrate an
interesting phenomenon. The student should be able to follow the author’s steps, but
is not expected to understand how the author knew to take these steps.

Example 2.57 Consider the DE

2xy dv + (y* — 2%)dy = 0. (116)

This DE is not exact on any region in the zy plane. However, the functions M (x,y) =
22y and N(z,y) = y?> — 2% are continuously differentiable on the whole plane, and
the only point at which they are both zero is (0,0). So again, we have a dif-
ferential with one singular point, which happens to be the origin*? Again letting
R = {R? minus the origin}, Theorem 2.46 guarantees us that through each point
(xo,y0) # (0,0), there exists a unique solution curve of (116). (We could have used
this theorem similarly in Examples 2.55 and 2.56, but there was no real need since
we were able to solve these equations quickly, and just see directly that every point
of R lay on a unique maximal-in-R solution curve.)

Observe that the positive x-axis is a solution-curve: if we set =(t) = t,y(t) =
0,t € (0,00), then the trace of this parametrized curve is the positive z-axis, and for
all t € (0,00) we have
dy

25 (8)y(1) Z—f+(y(t)2—x(t)2)% — 2014 (=)0 = 0.

42In general, singular points can occur anywhere in the zy plane. The reason that the origin is
used in so many examples in these notes is to simplify the algebra, so that the student may focus
more easily on the concepts.
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Similarly, the negative x-axis is a solution-curve. The uniqueness statement in The-
orem 2.46 guarantees us that the positive and negative z-axes are the only solution
curves containing a point on either of these open half-axes. Therefore no other solu-
tion curve in R contains a point (z,y) for which y = 0; every other solution curves
in R lies either entirely in the region R, = {(z,y) | v > 0}, the half-plane above
the z-axis, or entirely in the region R_ = {(z,y) | y < 0}, the half-plane below the
ZT-axis.
On R, , and also on R_, equation (116) is algebraically equivalent to

1
" (2zy dz + (y* — 2*)dy) = 0. (117)

But as the student may verify,

1 5 o T 7
") (2zy dz + (y° — 2%)dy) = 2; de + (1 - E)dy

2
e
Y
~ d<x2+y2>.
Y

So on R,, and also on R_, the left-hand side of (117) is exact; it is dF', where
F(z,y) = ’”Z—Zyz This differential has no singular points in R, or R_, so Example
2.54 applies. The general solution of (117), in implicit form, on either of these regions,
is

z? 4 y?
()

where set of allowed values of C' is the range of F' on each region. Since the sign of

24" g the same as the sign of y, this means that on R, only positive C’s will be

allowed, and on R_, only negative C’s will be allowed. To see that these are the only
restrictions on C, just set x = 0 in (117), and see that F(0,C) = C.

Now for some algebraic rearrangement. Let us write C' = 2b in (118). Then b is

a semi-arbitrary constant with exactly the same restrictions as C' (b > 0 for solution
curves in R, b < 0 for solution curves in R_). Then on each region,

=C, (118)

2 4,2

¥ +y — 9
()

2%+ y® = 2by

v+ —2by =0
w24y =2y + 0 =12
22 + (y — b)* = b% (119)

1117
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Figure 4: Some solution curves of 2zy dx + (y* — #?)dy = 0. (The graphing utility used does not
do a good job near the origin; there should be no gap in any of the circles.)

The graph of (119) in R? is a circle of radius |b] centered at (0,b) on the y-axis; the
graph in R is the circle with the origin deleted. Thus, these circles-with-origin-deleted
are the solution curves of (117) on R, and on R_. But since (117) is algebraically
equivalent to (116) on these regions, the same curves are all the solution curves of
(116) in these regions.

We have now found all the solution curves of (116) in R that do not intersect the
x-axis, as well as all those that do intersect it. So we have all the solution curves in
R = {R? minus the origin}. If we now re-include the origin, we see that the origin lies
on every one of the circles (119), as well as on the z-axis. With the origin re-included,
it is easy to see that the full z-axis is a solution curve of (116). We leave the student
to check that each full circle (119), with the origin included, is also a solution curve
of (116).

So it appears that the general solution of (116) consists of all circles centered
on the y axis, plus one “exceptional” curve, the z-axis. We will see shortly that this
does not meet our definition of “general solution”, however. But what is correct is
that the general solution of (116), in implicit form, is

{22 +(y—b)*=0*|b#0} and {y =0} (120)

An alternative way of expressing the general solution in implicit form is as follows.
In (118), C' can be any nonzero constant, so we may write C' as %, where the allowed
values of K are also anything other than zero. We can then rewrite (118) as y =
K (z* + y?). The solution curve that lie in Ry have K > 0; those that lie in R, have
K < 0. These give all the implicit-form solutions in the “b-family”, just expressed
in different-looking but algebraically equivalent way. But magically, if we now allow
K = 0, we get the lonely y = 0 solution as well. So we can also write the general
solution of (116), in implicit form, as
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y=C(2"+y°) (121)

where C'is a completely arbitrary constant. (We have renamed K back to C' just
because we felt like it.)

Now, why is it that the general solution of (116) (no “in implicit form”) is not
the collection of circles plus the z-axis? In Figure 4, start at a point other than the
origin on any of the circles. Move along the circle in either direction till you reach
the origin. When you reach the origin continue moving, but go out along a different
circle, either on the same side of the y-axis as the first circle or on the opposite side,
whatever you feel like. Stop before you reach the origin again. Erase the endpoints
of the curve you just drew (see the second paragraph after Definition 2.41), and you
have a perfectly good, smooth, solution curve that is not contained in any circle or
in the z-axis.

You can let the z-axis into this game as well. For example, start on the positive
x-axis, move left till you reach the origin, and then move out along one of the circles.

The phenomenon above is the reason we allow possibility (iii) in Definition 2.52.

Some cautionary notes on our terminology:

1. An extremely careful reader may have noticed that in the first part of the
Definition 2.52 we do not require the solution curves to be maximal, as one
might have expected from comparison with Definition 2.18 and the discussion
before that definition. The reason is that we have defined maximal solution
curves of Mdx + Ndy = 0 only in regions in which Mdx + Ndy has no singular
points, while Definition 2.52 allows for singular points. Because we do not insist
on maximality of the curves in Definition 2.52, there is redundancy built into
this definition that we were able to avoid in Definition 2.18: the general solution
of (109) includes solution curves that are subsets of other solution curves.

Example 2.57 illustrates one of the reasons it is difficult to give a satisfactory,
useful, general definition of “maximal solution curve” of Mdx + Ndy = 0 in a
region that includes singular points of Mdx+ Ndy. For the sake of concreteness,
using Figure 4 for reference, start at the point P = (0,1) and move counter-
clockwise along the “upper circle” 22+ (y —1)? = 1. When you reach the origin,
continue by moving along the mirror-image “lower circle” 2% + (y + 1) = 1,
clockwise, until you reach the point @) = (0, —1). Deleting the endpoints in or-
der to meet our definition of “smooth curve”, you now have an open S-shaped
curve smooth from P to (). This curve is extendible to a larger solution curve:
imagine dragging the starting-point P clockwise along the upper circle, and
dragging () clockwise along the lower circle. We can drag P to any point in the

66



open first quadrant lying on the upper circle, and can drag ) to any point in
the open third quadrant lying on the lower circle. No matter how far we drag
P or ) (subject to the quadrant restrictions), the curve we get is a solution
curve of (116) that is extendible to a larger solution curve; we can always drag
the endpoints farther, getting them closer and closer to the origin. Were we to
allow P or @ to reach the origin, we would violate our definition of “smooth
curve” (e.g. were we to let them both reach the origin, we’d have a figure-8).
So there is no largest smooth solution curve that contains our S-shaped solution
curve.

2. Do not be misled by the terminology “the general solution of (109), in R, in
implicit form.” While there is only one general solution of (109) in R—the
collection of all solution curves in R—there are infinitely many implicit forms of
this general solution. Sometimes two different implicit forms of the same general
solution in R may differ only in “trivial” ways; for example, if one implicit form
of the general solution in R is a family of equations F'(x,y) = C, then another
is 2F (z,y) = C, and another is F(z,y)*> = C. But this is not the only way
that the implicit forms of the same general solution can differ. We saw this in
Example 116, and we see it again in the next example.

3. In Definition 2.52, the author chose to reserve the term “general solution” (with
no extra words other than, perhaps, “in R”) for the collection of all solution
curves, because curves, and not functions or equations, are what a DE in dif-
ferential form is looking for. An unfortunate consequence of this choice is that
one must then decide what other term to use for a collection of algebraic equa-
tions whose graphs yield all the solution curves. The author’s choice, “general
solution in implicit form”, has some definite disadvantages. Among these is the
fact that the general solution in implicit form can be very explicit, as in the
next example.

Example 2.58 Consider the DE

xdy — ydr = 0. (122)

The student may check that every straight line through the origin—whether horizon-
tal, vertical, or oblique—is a solution curve.

The only singular point of zdy — ydx is the origin. Therefore in R = {R? minus
the origin}, there is a unique maximal solution curve through every point. If we take
the straight lines through the origin, and delete the origin, we get the collection of
open rays emanating from the origin. Every point of R lies on one and only one such
ray. Therefore these are all the solution curves of (122) in R. It follows that there
are no inextendible solution curves in R? other than what we get by re-including the
origin, i.e., the family of all straight lines through the origin.
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There are several ways we can write equations for this family of straight lines,
i.e. write the general solution of (122) in implicit form, one of which is

{y =Cz} and {z =0}. (123)

This grouping puts all the non-vertical lines into one family, and makes the vertical
line look lonely. But another simple way of writing the general solution of (122) in
implicit form is

{r =Cy} and {y=0}. (124)

This groups all the non-horizontal lines together, and orphans the horizontal line
instead. In contrast to what we saw in Example 116, in the current example there
is no single family of equations, parametrized by one real-valued arbitrary (or semi-
arbitrary) constant, that constitutes a general solution of (122) in implicit form. H

Example 2.59 (Level-set with a corner) Let F(z,y) = y* — |z|>. This func-
tion has continuous second partial derivatives on the whole plane R? (for example

—3x%, >0 2F —6z, >0

oF 82F _ .
50 S5 (1,Y) { 60 <0 ). It has one critical

o (@y) = 322, <0’
point, the origin. The level-set containing this critical point is the graph of

y' —la|* =0, (125)

which is simply the graph of y = |z|. The portion of this graph in the open first
quadrant (y = z, = > 0) is a smooth curve contained in this level-set, and so is the
portion of this graph in the open second quadrant. But the origin is a point of this
level-set that is not contained in any smooth curve in the level-set.

Equation (125) is a solution of

-3z, >0
yidy + { 922 o <0 }d:c =0; (126)

it meets both criteria in Definition 2.48. However, the graph of (125) contains a point,
(0,0), that is not on any solution curve of (126) (see Definitions 2.42 and 2.41). Thus,
in general, the graph of a solution “F(z,y) = C” of dF = 0 can include points that
do not lie on any solution curve of dF =0. I

2.6 Relation between differential form and derivative form

Suppose that C is smooth curve, and v a continuously differentiable, non-stop para-
metrization of C, with domain-interval 1. Write v(t) = (f(¢), g(t)) (for what we are
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about to do, writing “y(t) = (z(t),y(t))” would lead to confusion). Let’s call subin-
terval I; of I “z-monotone” if f'(t) is nowhere 0 on I;, and “y-monotone” if ¢'(t)
is nowhere 0 on I;.** (These are not mutually exclusive: if both f’(t) and ¢'(t) are
nowhere zero on Iy, then /) is both z-monotone and y-monotone.)

Since 7 is a non-stop parametrization, for every ¢ € I at least one of the two
numbers f'(t), ¢'(t) is nonzero. Hence every ¢t € I lies in at least one of the sets
{tel]| f(t)y#0}, {tel]dl(t)+#0} Itcan be shown that each of these sets is
a union of subintervals of /. Thus, every ¢ € I lies in a subinterval /; that is either
r-monotone or y-monotone.

Let I; be an z-monotone interval. Then f'(¢) not zero for any ¢t € I;. The
Inverse Function Theorem that you may have learned in Calculus 1 assures us that
there is an inverse function f !, with domain an interval I, and with range I;, and
that f~! is continuously differentiable**. Let C; be the smooth curve parametrized
by (f(t),g(t)) using just the x-nice open interval I; rather than the whole original
interval I. On this domain, “z = f(¢)” is equivalent to “t = f~!(z)”. So, temporarily
writing tpew = , for (z,y) = (f(t), g(t)) € C; we have

xr = tnew:
y=gt)=g(f (@) = g(f (tuew))
= ¢(tnew)

where tyew € Io and ¢ = go f~L. Since g and f~! are continuously differentiable, so
is h. Furthermore, dz/dtye, = 1 # 0. Therefore the equations above give us a new
continuously differentiable, non-stop parametrization Ve, of Cy:

P)/new(tnew) - (tnewa ¢(tnew))' (127)

The variable in (127) is a “dummy variable”; we can give it any name we like. Since
the z-component of Ve (tnew) is simply the parameter ¢,y itself, we will simply use
the letter x for the parameter; thus

Tnew () = (7, $()). (128)
Thus, this parametrization uses x itself as the parameter, treats = as an independent
variable, and treats y as a dependent variable related to x by y = ¢(x).

43This is very temporary terminology, invented only for this part of these notes.

44This important theorem used to be stated, though usually not proved, in Calculus 1. Unfor-
tunately, it seems to have disappeared from many Calculus 1 syllabi. The theorem says that if f
is a differentiable function on an interval J, and f'(¢) is not 0 for any f € J, then (i) the range
of f is an interval K, (ii) an inverse function f~! exists, with domain K and range .J, and (iii)
1 is differentiable, with its derivative given by (f~1)/(z) = 1/f'(f !(z)). (If we write = = f(t)
and t = f~1(z), then the formidable-looking formula for the derivative of f~! may be written in

the more easily remembered, if somewhat less precise, form j—fg = dxl/ 7i-) If the derivative of h is

continuous, so is the derivative of A1,
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Now suppose that our original curve C is a solution curve of a given differential-
form DE

M (z,y)dx + N(z,y)dy = 0. (129)

Then C;, a subset of C, is also a solution curve, so every continuously differentiable,
non-stop parametrization (z(t), y(t)) of C; satisfies

M(a(t), 9(0) 5 + N(a(0), y(1) o = 0 (130)

In particular this is true for the parametrization (128), in which the parameter ¢ is
itself, and in which have y(t) = ¢(t) = ¢(z) = y(z). Therefore, for all z € I,

0 = M0+ N 6) ¢0)

= M(z,¢(z)) + N(z, 6(x)) ¢'(x). (131)

The right-hand side of (131) is exactly what we get if we substitute “y = ¢(z)” into
M(z,y) + N(z,y)%. Hence ¢ is a solution of
dy

M(z,y) + N(z, y)@ = 0. (132)

Therefore the portion C; of C is the graph of a solution (namely ¢) of the
derivative-form differential equation (132).

Similarly, if Cy is a portion of C obtained by restricting the original parametriza-
tion 7 to a y-monotone interval I, then Cs is the graph of of a differentiable function
x(y)—more precisely, the graph of the equation © = ¢(y) for some differentiable
function ¢—that is a solution of the derivative-form differential equation

M(z, y)fl—; + N(z,y) = 0. (133)

Therefore:

Every solution curve of the differential-form equation (129)
is a union of graphs of solutions of the derivative-form (134)
equations (132) and (133).

Note that the graphs mentioned in (134) will overlap, in general, since the z-monotone
intervals and y-monotone intervals of a continuously differentiable, non-stop para-
metrization v will usually overlap. (The only way there will not be an overlap is
if f'(t) = 0 or ¢'(t) = 0, in which case C is a vertical or horizontal straight line,
respectively, and there are, respectively, no z-monotone or y-monotone subintervals.)
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We call (132) and (133) the derivative-form equations associated with (129). Sim-
ilarly, we call (129) the differential-form equation associated with either of the equa-
tions (132), (133).

More generally, if a derivative-form equation is algebraically equivalent to (132)
or (133) on a region R, we call the equation a derivative form of (129) on R. Similarly,
if a differential-form equation is algebraically equivalent to (129) on a region R, we
call the equation a differential form of (132) and (133) on R.%

Now compare (132) with the general first-order derivative-form DE with inde-
pendent variable z and dependent variable v,
dy

Equation (132) is a special case of (135), in which the dependence of F on its third
variable is very simple. If we use a third letter z for the third variable of F, then (132)
corresponds to taking F(z,y, 2) = M (z,y) + N(x,y)z, a function that can depend in
any conceivable way on z and y, but is linear separately in z. In general, (135) could
be a much more complicated equation, such as

3
<Z—i> + (v +y) sin(j—i) + ze¥ = 0. (136)

Solving equations such as the one above is much harder than is solving equations
of the simpler form (132). For certain functions F that are more complicated than
(132), but much less complicated than (136), methods of solution are known. But
there is not a highly-developed general theory for working with equation (135) for
general F’s.

One of the features of (132) that makes it so special is that on any region on
which N(z,y) # 0, (132) is algebraically equivalent to

dy M(z,y)
_ 7\ 137
dx N(z,y)’ (137)
which is of form
dy
) 138
I f(z,y) (138)

Recall that equation (138) is exactly the “standard form” equation that appears in
the fundamental Existence and Uniqueness Theorem for initial-value problems. This

45This is more restrictive than the analogous statement in the textbook from which the author is
currently teaching, which omits the requirement of algebraic equivalence. This textbook, and others,
allow multiplication/division by functions that can be zero. But this can lead to the omission of one
or more solutions of the original DE, or the inclusion of one or more spurious solutions—functions
(or curves) that are not solutions (or solution curves) of the original DE—when trying to write down
the general solution of the original DE.
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theorem is absolutely crucial in enabling us to determine whether our techniques of
finding solutions actually give us all solutions.

If you re-read these notes, you will see that all the general facts about DEs
in derivative form—such as the definition of “solution”, “implicit solution”, “gen-
eral solution”, and the fact that algebraically equivalent DEs have the same set of
solutions—were stated for the general first-order DE (135). These facts apply just as
well to nasty DEs like (136) as they do to (relatively) nice ones like (135). However,
in all of our examples, we used equations that were algebraically equivalent to (132)
on some region (hence also to (138)). The reason is that although the concept of “the
set of all solutions” makes perfectly good sense for the general equation (135), the
author wanted to use examples in which he could show the student easily that the
set, of all solutions had actually been found.

Nowadays, students in an introductory DE course rarely see any first-order
derivative-form equations that are not algebraically equivalent, on some region, to
a DE in the standard form (138). Because of this, it is easy to overlook a significant
fact: the only derivative-form DEs that are related to differential-form DEs are those
that are algebraically equivalent to (138) on some region. The two types of equations,
in full generality, are not merely two sides of the same coin.

However, for derivative-form DEs that can be “put into standard form” —which
are exactly those that are algebraically equivalent to a DE of the form (132)—there
is a very close relation between the two types of DEs. We are able to relate many,
and sometimes all, solutions of a DE of one type to solutions of the associated DEs
of the other type. Statement (134) gives one such relation.

Let us say that a derivative-form equation, with independent variable x and
dependent variable y, is in “almost standard form”% if it is in the form (132), or can
be put in that form just by subtracting the right-hand side from the left-hand side. If
you re-inspect the argument leading to the conclusion below equation (133), you will
see that it also shows that the graph of every solution of (132) or (133) is a solution
curve of (129). Thus:

The graph of every solution of a derivative-form
equation in almost-standard form is a solution (139)
curve of the associated differential-form equation.

Combining (134) and (139), we conclude the following:

A smooth curve C is a solution curve of an equation
in differential form if and only if C is a union of
graphs of solutions of the associated derivative-form
equations.

(140)

46 Another bit of terminology invented only for these notes, just to have a name to distinguish
(132) from (137) on regions in which N(z,y) may be zero somewhere.
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We emphasize that in deriving these relations, the transition from the differential-
form DE (129) to the derivative-form DEs (132) and (133) was NOT obtained by the
nonsensical process of “dividing by dz” or “dividing by dy”, even though the notation
makes it look that way. The transition was achieved by understanding that what we
are looking for when we solve (104) is curves whose parametrizations satisfy (130),
and that for particular choices of the parameter (valid on the intervals that we called
“z-monotone” or “y-monotone”) (130) reduces to (132) or (133).

Similarly, transitions from derivative form to differential form are NOT achieved
by the nonsensical process of “multiplying by dz” or “multiplying by dy”. The beauty
of the Leibniz notation g—z ” for derivatives is that it can be used to help remember
many true statements by pretending, momentarily, that you can multiply or divide
by a differential just as if it were a real number*’. In particular, we can use this
principle help us easily remember that the differential-form equation (129) is related
to (but not the same as!) the derivative-form equations (132) and (133). But this
notational trick doesn’t tell us everything, such as the precise relationship among
these equations, which is statement (139) (of which statement (134) is the “only if”
half).

Now let us turn to the way that differential-form DEs are used to help us find
solutions of almost-standard-form derivative-form DEs. In this setting, we start with
an equation of the form (132) (or one that can be put in this form by subtracting one
side of the equation from the other). We then look at the associated differential-form
equation M (z,y)dx + N(x,y)dy = 0, which treats = and y symmetrically, remember-
ing that what we want in the end are solutions that are functions of x. Suppose that
C is a solution curve of M (z,y)dx+ N(z,y)dy = 0. Then, from statement (134), every
solution curve is a union of (usually overlapping) sub-curves, each of which is either
a solution y = ¢(x) of (132), or a solution z = ¢(y) of (133). But what are looking
for now is solutions only of the first type. C may contain a vertical line segment, but
such a segment is not contained in the graph of any equation of the form y = ¢(z).
However, if we delete from C any points at which the tangent line is vertical, remains
is a union of graphs of solutions of (132).

That describes the geometric relation between solutions of Mdx + Ndy = 0 and
solutions of (132), but what can we say in terms of formulas? Let us suppose that (for
our given M and N) we have found a solution G(z,y) = ¢y of M (z,y)dz+N(z,y)dy =
0. Referring back to (2.48), this implies that

(a) the graph of G(z,y) = ¢y contains a smooth curve,

and that

47Simultaneously, the weakness of the Leibniz notation is that it promotes some incorrect or lazy
thought-patterns. It encourages the manipulation of symbols without the understanding of what
the symbols means. It may lead the student to think something is “obviously true” when it isn’t
obvious, and often when it isn’t true.
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(b) any portion of this graph that’s a smooth curve is a solution curve of
Mdx + Ndy = 0.

We ask the question: is G(z,y) = ¢y an implicit solution of our original derivative-
form equation (132)7

To answer this question, we go back to Definition 2.4. In order for G(x,y) = ¢
to be an implicit solution of (132), its graph must, first of all, contain the graph
of some solution y = ¢(x) of (132). Focusing on the fact that such a solution is a
differentiable function of x, we ask: is it ever possible for a graph of G(z,y) = ¢y not
to contain the graph of a differentiable function of =, on any interval, no matter how
tiny?

The graph of G(x,y) = ¢y contains points of (potentially) two types: those
that lie in a smooth curve contained in the graph, and those that do not. Let’s
suppose that C is a smooth curve lying in the graph of G(z,y) = ¢y, but assume
that this graph does not contain the graph of a differentiable function of x. Let
v(t) = (f(t),g(t)) be a continuously differentiable, non-stop parametrization of C,
with parameter-interval I. In the language we used in the argument leading to (134),
if I contains an z-monotone interval, then that argument shows that C contains
the graph of a differentiable function of z, which would contradict our assumption.
Therefore I contains no z-monotone intervals, so f'(f) = 0 on I. Therefore f is
constant; we have f(t) = x¢ for some zy. Hence C is contained in the vertical line
{z = xo}.

This shows that if the graph of G(z,y) = ¢y does not contain the graph of a
differentiable function of x, then the graph consists entirely of segments of vertical
lines, plus any points of the graph not contained in a smooth curve.

It can be shown that if the function G is differentiable—which will usually be the
case if the equation G(z,y) = ¢ is found by the techniques used in an introductory
DE course—and the graph of G/(z,y) = ¢, satisfies all the conditions above, then
there are no points on this graph that do not lie on a smooth curve in the graph,
and the graph consists entirely of vertical lines. From this, it can further be shown
that G(x,y) is a function of x alone. (For example, the equation G(z,y) = ¢y could
be & = 3, whose graph in the zy plane is a single vertical line, or 22 — 1 = 0, whose
graph is two vertical lines; or sin x = 0, whose graph is an infinite collection of vertical
lines.) In this case, the solution “G(xg,yo) = ¢o” of M (z,y)dx + N(z,y)dy = 0 is not
an implicit solution of M (x,y) + N(z, y)% =0.

So if G/(z,y) is differentiable and is not a function of z alone, then the graph
of G(x,y) = ¢y does contain the graph of some differentiable function ¢ of x. The
graph of y = ¢(x) is a smooth curve lying in the graph of G(z,y) = ¢y. Referring to
(b) above, we see that this implies that the graph of y = ¢(z) is a solution curve of
Mdz 4+ Ndy = 0. The argument leading from the sentence that includes (129) to the
sentence that includes (132) then shows that ¢ is a solution of (132).

To recap: we have shown that if the equation G(x,y) = ¢y is a solution of
M(z,y)dx + N(z,y)dy = 0, and G is differentiable, then:
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either G(z,y) is a function of = alone, in which case )
the equation G(x,y) = ¢y is not an implicit solution of
M(z,y) + N(z,y)% = 0, or

(141)
G(z,y) is not a function of z alone, in which case the
equation G(x,y) = ¢y is an implicit solution of

M(z, ) + Nz, y) & = 0. J

Since the graph of every solution of M+N§—i is a solution curve of Mdx+ Ndy =
0, (141) implies the following:

Suppose that we have a general solution, in implicit form, of a )
differential-form equation Mdx + Ndy = 0. Further suppose that
each equation in the collection comprising the general solution is
of the form G(x,y) = constant (not necessarily the same G for

all equations in the general implicit-form solution), where G (142)
is differentiable. Then the collection of equations obtained by
deleting those equations for which G(z,y) depends only on y, is
the general solution, in implicit form, of the associated derivative

-form equation M + Nj—i =0. )

Example 2.60 (Exact equations, part 4) Suppose that we wish to solve a DE of
the form
dy

M(z,y) + N(x, y)% =0 (143)
on a region R on which N(z,y) is not identically zero (if N(x,y) were identically zero,
then (143) would reduce to the algebraic equation M (z,y) = 0, not a true differential
equation). If the associated differential-form equation is exact on R, and we have
found a function F' such that Mdx + Ndy = dF on R, then Example 2.53 tells us
that the general solution of Mdx + Ndy = 0 on R, in implicit form, is the family of
equations

F(r,y)=C (144)
where C' is a “semi-arbitrary” constant. The function F' is automatically differen-
tiable, so (142) applies: unless F' is a function of z alone, each of the equations
(144) is an implicit solution of (143). But if F' is a function of x alone, then
N(z,y) = %—I;(:r,y) = 0. Therefore if Mdx + Ndy = dF on R, then (144) is the
general solution of (143) in implicit form (i.e. it is not just the general solution, in
implicit form, of the associated differential-form equation). Wl
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