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2010First-order ODEs: Derivative form, Di�erential Form, andImpli
it Solutions[These notes are under 
onstru
tion. Comments and 
riti
ism are wel
ome.℄Introdu
tionFirst-order ODEs 
ome in two forms: derivative form and di�erential form. Thetwo forms are 
losely related, but di�er in subtle ways not addressed adequately inmost textbooks (and often overlooked entirely)1. This often leads to an un
lear orinadequate de�nition of \impli
it solution" to an equation in derivative form, beforedi�erential-form equations have even been introdu
ed.The purpose of these notes is to give a de�nition of \impli
it solution" that isa

urate, 
omplete, and unambiguous. In order to make our presentation readable
on
urrently with a DE textbook whose topi
s appear in a traditional order, we de�ne\impli
it solutions of a DE in derivative form" before we even introdu
e di�erentialform. However, one 
annot a
hieve a 
omplete understanding of impli
it solutionswithout investigating di�erential-form DEs in more depth than is typi
al for a �rst
ourse in DEs. Therefore, after we 
over di�erential-form DEs in these notes, we
ome ba
k to derivative-form equations to 
lean up the pi
ture.The �rst se
tion below is written for mathemati
ians; it is intended to show why
ertain de�nitions 
ommonly seen in textbooks are inadequate. Most students, intheir �rst di�erential equations 
ourse, will not be in a position to appre
iate theseinadequa
ies. It is up to ea
h instru
tor to de
ide whether, in a �rst 
ourse on ODEs,it is more important that a de�nition be short and (super�
ially) simple than that itbe 100% a

urate.1 Notes for Instru
tors[This se
tion is not yet written℄1A
tually, it is only derivative-form DEs that 
an be written in the \standard form" dydx =f(x; y) that are 
losely related to di�erential-form DEs. This is an important di�eren
e betweenthe two types, but there are important di�eren
es even between standard-form derivative-form anddi�erential-form DES.
1



2 Notes for Students2.1 Review of \derivative form" and \solution"In these notes, \di�erential equation", whi
h we will frequently abbreviate as \DE",always means ordinary di�erential equation, of �rst order unless otherwise spe
i�ed.A �rst-order equation DE in derivative form is a di�erential equation that (upto the names of the variables), using only the operations of addition and subtra
tion,
an be put in the form F(x; y; dydx) = 0; (1)where F is a fun
tion of three variables. Su
h a DE has an independent variable (inthis 
ase x) and a dependent variable (in this 
ase y). The notation \ dydx" tells youwhi
h variable is whi
h.De�nition 2.1 For a given F, a solution of (1) on an open interval I is a real-valueddi�erentiable fun
tion � on I su
h that when \y = �(x)" is substituted into (1), theresulting equation is a true statement for all x 2 I.2For a given F, we 
all a one-variable fun
tion � a solution of (1) (no intervalmentioned) if � is a solution of (1) on some open interval I.(In these notes, the symbol indi
ates the end of a de�nition, example, exer
ise,or theorem.)Hen
eforth, whenever we say \solution of a di�erential equation on an intervalI" we always mean an open interval I.3If � is a solution of a given DE (perhaps with an interval spe
i�ed, perhaps not)whose dependent and independent variables are y and x respe
tively, we allow our-selves the freedom to say that the equation \y = �(x)" is a solution of the DE. This2 Some authors refer to what we have just de�ned as an expli
it solution of (1) on I . This useof \expli
it" is intended to help students understand later, by way of 
ontrast, what an impli
itsolution is. But the author of these notes feels that the terminology \expli
it solution" is misleadingand potentially 
onfusing. So-
alled \expli
it solutions" 
an be fun
tions for whi
h it is e�e
tivelyimpossible to write down an expli
it formula, whi
h is usually what one means by \expli
itly-de�nedfun
tion".3In order to avoid 
ertain distra
ting te
hni
alities, in these notes we sti
k to open intervals forthe allowable domains of solutions to di�erential equations in derivative form. However, often itis important to study di�erential equations on non-open intervals as well. For example, in initial-value problems in whi
h the independent variable is time t, we are generally interested only in whathappens in the future of the initial time t0, not in the past. In this 
ase, the relevant intervals are ofthe form [t0;1), [t0; t1), or [t0; t1℄, where t1 > t0. Most of the statements made in these notes aboutdi�erential equations on open intervals 
an be generalized to non-open intervals, but sometimes thestatements have to be worded in a more 
ompli
ated fashion. Your instru
tor 
an tell you whi
hstatements generalize, and what modi�
ations need to be made.2



allows us the 
onvenien
e of being able to say, for example, \y = x2 is a solution ofdydx = 2x" without having to introdu
e extra notation (e.g. the letter � we have beenusing) for the squaring fun
tion. This is an example of \permissible abuse of termi-nology". An equation and a fun
tion are two di�erent animals, and we should notforget the fa
t that, by de�nition, a solution of a DE is a one-variable fun
tion. Buton
e we understand what \solution of a DE" means, we allow ourselves the luxury ofsaying, impre
isely, that \y = x2 is a solution of dydx = 2x" instead of the pre
ise butawkward, \The fun
tion � de�ned by �(x) = x2 is a solution of dydx = 2x."2.2 Impli
it solution of a derivative-form DEKey in understanding what \impli
it solution of a di�erential equation" means isthe understanding the 
on
ept of an impli
itly de�ned fun
tion of one variable. Youlearned about impli
itly de�ned fun
tions as far ba
k as Cal
ulus 1, when you studiedimpli
it di�erentiation, but we will review the 
on
ept here. In order to make surethe 
on
ept is 
lear, we go into more depth than you probably did in Cal
ulus 1 (oreven Cal
ulus 3).Suppose we are given an algebrai
 (i.e. non-di�erential) equation in variables xand y. We 
an always write su
h an equation in the formG(x; y) = 0for some two-variable fun
tion G. We may be interested in solving for y in terms ofx. For example, if x2 + y3 � 1 = 0 (2)then y = (1� x2)1=3: (3)In other words, if we de�ne G(x; y) = x2 + y3 � 1 and �(x) = (1 � x2)1=3, thenwhenever the pair (x; y) satis�es G(x; y) = 0, it satis�es y = �(x). Conversely, onemay verify by dire
t substitution that if y = (1� x2)1=3 then G(x; y) = 0. ThusG(x; y) = 0 if and only if y = �(x): (4)Note that the \if" part of this impli
ation is the \Conversely . . . " statement above,and 
an be written equivalently as the equationG(x; �(x)) = 0:More generally than this example, any time (4) is true for a two-variable fun
-tion G and one-variable fun
tion �, we say that the equation G(x; y) = 0 impli
itly3



determines (or impli
itly de�nes) y as a fun
tion of x, and we 
all � the fun
tion ofx impli
itly determined/de�ned by the equation G(x; y) = 0.Now 
onsider the equation x2 + y2 � 1 = 0: (5)\Solving for y in terms of x" gives the relationy = �p1� x2: (6)Looking just at (5), it is already 
lear that any numeri
al 
hoi
e of x restri
ts thepossible 
hoi
es of y that will make the equation a true statement. Equation (6) tellsus the only possible values for y that will work. It also tells that for �1 < x < 1there are at most two su
h values; for x = 1 and for x = �1 there is at most onesu
h value; and for jxj > 1 there are no values of y that will work. Conversely, if wesubstitute y = �p1� x2 into (5), we see that all the values of y that we have labeledas \possible" a
tually do work. Thusx2+y2�1 = 0 if and only if jxj � 1 and either y = p1� x2 or y = �p1� x2: (7)This is a mu
h weaker statement than a statement of the form (4), be
ause thesign in �p1� x2 
an be 
hosen independently for ea
h x. On the domain [�1; 1℄, ifwe de�ne �1(x) = p1� x2; (8)�2(x) = �p1� x2; (9)�3(x) = � p1� x2 if x is a rational number;�p1� x2 if x is an irrational number; (10)then all three of these fun
tions yield true statements, for all x 2 [�1; 1℄, whensubstituted in as y in (5). In fa
t, sin
e the sign \�" 
an be assigned randomly forea
h x 2 [�1; 1℄, there are in�nitely many fun
tions � that work. What distinguishes�1 and �2 from all the others is that they are 
ontinuous. If we restri
t their domainsto the open interval (�1; 1), then they are even di�erentiable.Now 
onsider a more 
ompli
ated equation, su
h asex + x+ 6y5 � 15y4 � 10y3 + 30y2 + 10xy2 = 0: (11)Clearly, 
hoosing a numeri
al value for x restri
ts the possible values for y that willmake (11) a true statement. It turns out that, depending on the 
hoi
e x, there
an be anywhere from one to �ve values of y for whi
h the pair (x; y) satis�es (11).As in the previous example, on any x-interval I for whi
h there is more than one4



Figure 1: The graph of ex + x+ 6y5 � 15y4 � 10y3 + 30y2 + 10xy2 = 0:y-value that \works" for ea
h x, there will be in�nitely many fun
tions � for whi
hG(x; �(x)) = 0, where G(x; y) is the left-hand side of (11). However, there are notvery many 
ontinuous �'s that work. In this example, whatever x-interval I we
hoose, there 
an are at most �ve 
ontinuous fun
tions � de�ned on I for whi
hG(x; �(x)) = 0. Writing out expli
it formulas for them, analogous to the formulas for�1 and �2 in the previous example, is a hopeless task. But these 
ontinuous fun
tions� exist nonetheless. We 
an see this visually in Figure 1.De�nition 2.2 Let G be a fun
tion of two variables, � a fun
tion of one variable,and I an interval. We say that the equation G(x; y) = 0 impli
itly determines orimpli
itly de�nes the fun
tion �, regarded as a fun
tion of x (or whatever name isused for the �rst variable of G), if G(x; �(x)) = 0 for all x 2 I.Without referen
e to a spe
i�
 interval I, we say that the equation G(x; y) = 0impli
itly determines �, regarded as a fun
tion of the �rst variable ofG, if the equationG(x; y) = 0 impli
itly determines � (regarded as a fun
tion of x) on some openinterval.The same de�nitions apply if the \0" in G(x; y) = 0 is repla
ed by any otherreal number, or even by another fun
tion H(x; y) (in the latter 
ase, we repla
e\G(x; �(x)) = 0" with \G(x; �(x)) = H(x; �(x))".Graphi
ally, a fun
tion � is impli
itly determined by the equation G(x; y) = 0 ifthe graph of � is part of the graph of G(x; y) = 0. (For these purposes, \all of" is a5



spe
ial 
ase of \part of".)There are instan
es in whi
h we are interested in whether there is one-variablefun
tion � su
h that G(�(y); y) = 0. This 
omes up when we think of trying to solvethe equation G(x; y) = 0 for x in terms of y, rather than for y in terms of x. To handlethis 
ase we 
an give a de�nition analogous to De�nition 2.2, repla
ing the phrases\regarded as a fun
tion of x" and \�rst variable" with \regarded as a fun
tion y and\se
ond variable", and repla
ing \G(x; �(x)) = 0 with \G(�(y); y) = 0". To simplifywording below, any time we say an equation G(x; y) = 0 impli
itly determines (orde�nes) a fun
tion �, we mean to regard � as a fun
tion of x, unless we say other-wise.Thus:� Equation (2) impli
itly determines the fun
tion � given by the formula �(x) =(1� x2)1=3.� Equation (5) impli
itly determines the fun
tions �1; �2; �3 de�ned in (8){(10),and in�nitely many others on the interval [�1; 1℄. The only 
ontinuous fun
tionsthat (5) determines on [�1; 1℄ are �1 and �2.� Equation (11) impli
itly determines in�nitely many fun
tions, but only a few
ontinuous fun
tions. In Figure 1, if we travel along the graph by startingat the upper left and moving along the 
urve, we en
ounter verti
al tangentsat points A, B, C, and D (labeled in the order that we en
ounter them).Let xA, xB, xC , and xD denote the x 
oordinates of these points. Then (11)impli
itly determines a 
ontinuous fun
tion of x, say �1, with domain (�1; xA℄;another 
ontinuous fun
tion of x, say �2, with domain [xB; xA℄; another, say �3,with domain [xB; xC ℄; another, say �4, with domain [xD; xC ℄; and another, say�5, with domain [xD;1℄. On the interval [�3;�2℄, the equation G(x; y) = 0determines �ve 
ontinuous fun
tions (the restri
tions of �1; �2; �3; �4, and �5 tothis interval). On the interval [�5;�4℄, G(x; y) = 0 determines three 
ontinuousfun
tions (the restri
tions of �1; �4, and �5 to this interval).In some 
ases, an equation G(x; y) = 0 will impli
itly determine one and onlyone fun
tion of x on some interval. That is a \best-
ase s
enario". When we arein su
h a 
ase, we 
an speak unambiguously of the fun
tion of x determined by thisequation. Often we 
an a
hieve this result \windowing" x and y; i.e., by agreeing to
onsider only pairs (x; y) where x lies in some spe
i�
 interval I and y lies in somespe
i�
 interval J . We denote the 
orresponding set in xy plane by I � J :I � J = f(x; y) j x 2 I and y 2 Jg:In these notes we will 
all su
h a set a re
tangle, even though we do not ex
lude thepossibility that I and/or J extend(s) in�nitely in one dire
tion or both. Thus, for6



Figure 2: The graph of x2 + y2 = 1.example, we 
onsider the whole xy plane a re
tangle; the set [1;1)� (�1;1) is are
tangle (
onsisting of all pairs (x; y) for whi
h x > 1); the strip (�1;1) � (0; 1℄is a re
tangle (
onsisting of all pairs (x; y) with 0 < y � 1). Of 
ourse, obje
ts thatEu
lid would have 
alled re
tangles, su
h as [1; 2℄ � [3:1; 4:9℄, are also re
tangles inour terminology. In these notes, we will be most interested in open re
tangles, thosewe get by taking the intervals I and J to open.When an equation G(x; y) = 0 impli
itly determines more than fun
tion of x,\windowing" may allow us to single out one of them. For example, 
onsider the graphof the 
ir
le x2 + y2 = 1 (Figure 2).Let P = (x0; y0) be any point on the 
ir
le other than (1; 0) or (�1; 0); thusy0 6= 0. For any su
h point, you 
an draw an open re
tangle R = I � J , 
ontaining(x0; y0), su
h that the portion of the 
ir
le lying inR is a portion of the graph of exa
tlyone of the two fun
tions �1; �2 in (8){(9) (�1(x) = p1� x2; �2(x) = �p1� x2). Forexample, if y0 > 0 you 
an take J to be any open subinterval of (0;1) that 
ontainsy0, and then take I to be any open interval whatsoever that 
ontains x0. Choose somepoints on the graph in Figure 2 and draw re
tangles around them with the desiredproperty.Note that the 
loser your point (x0; y0) gets to (1; 0) or (�1; 0), the more limitedyour 
hoi
es of I and J be
ome, in the sense that one endpoint of I will have to bevery 
lose to x0, and one endpoint of J will have to be very 
lose to y0. For exampleif y0 = �:01 and x0 = p:9999 � :99995, then the right endpoint of I will have to liebetween p:9999 and 1, while the right endpoint of J (whi
h gives the lo
ation of theupper boundary of the re
tangle) will have to lie between �:01 and :01. But as longas (x0; y0) 6= (�1; 0), some open re
tangle will work.If you take (x0; y0) = (1; 0), then this windowing pro
ess fails in two ways tohave the desired e�e
t. First, for no open interval I 
ontaining 1 is there a fun
tion� de�ned on all of I su
h that x2 + �(x)2 = 1 for all x 2 I, be
ause su
h an intervalI will 
ontain an x that is greater than 1 (so x2 + �(x)2 > 1 no matter what you7




hoose for �(x)). Se
ond, for any open re
tangle I � J 
ontaining (1; 0), for values ofx very 
lose to but less than 1, both the point (x;p1� x2) and (x;�p1� x2) will liein I � J . Thus I � J will in
lude points of the graphs of both �1 and �2, no matterhow small you take I and J .Of 
ourse, similar statements are true for the point (x0; y0) = (�1; 0).The Impli
it Fun
tion Theorem gives 
onditions under whi
h the \windowingnear a point (x0; y0)" idea works very ni
ely to guarantee that an equation su
h as\G(x; y) = 0" determines at least one di�erentiable fun
tion of x, and, if it determinesmore than one su
h fun
tion, to use (x0; y0) to single out one of them:Theorem 2.3 (Impli
it Fun
tion Theorem) Let G be a two-variable fun
tionwhose �rst partial derivatives are 
ontinuous on an open re
tangle R = I�J . Supposethat (x0; y0) 2 R and that �G�y (x0; y0) 6= 0, where �G�y denotes the partial derivative ofG with respe
t to the se
ond variable. Let 
0 = G(x0; y0).Then there exists an open subinterval I1 of I 
ontaining x0, an open subintervalJ1 of J 
ontaining y0, and a 
ontinuously di�erentiable fun
tion � de�ned on I1, su
hthat for all points (x; y) 2 I1 � J1,G(x; y) = 
0 if and only if y = �(x): (12)
Sin
e x0 lies in I1, we may look at what (12) tells us when x = x0. What thisstatement redu
es to when x = x0 is the following:for all y 2 J1,G(x0; y) = 
0 if and only if y = �(x0):But by the de�nition of 
0, we have G(x0; y0) = 
0. Therefore, sin
e y0 2 J1, the\only if" part of the above statement tells us that y0 = �(x0). Thus, the graph of thefun
tion � that the Impli
it Fun
tion Theorem gives us will always 
ontain the point(x0; y0).Let us pause to appre
iate how strong the 
on
lusion of this theorem is. State-ment (12) says that for ea
h x 2 I1, there is one and only one value y 2 J1 forwhi
h G(x; y) = 
0, namely the value �(x). Thus, (12) says that within I1 � J1, theequation G(x0; y0) = 0 determines y uniquely as a fun
tion of x. Not just uniquelyamong \ni
e" fun
tions, like 
ontinuous or di�erentiable fun
tions. Among all fun
-tions with domain I1 and range 
ontained in J1, � is the only fun
tion that satis�esG(x; �(x)) = 
0 identi
ally in x. This fun
tion has the additional ni
e feature of be-ing 
ontinuously di�erentiable (and hen
e 
ontinuous), but there is no other fun
tionwhatsoever on I1 that satis�es G(x; �(x)) = 
0 identi
ally in x.8



Compare statement (12) with statement (4). The only important di�eren
e isthat to get the se
ond line of (12), we had to make the windowing restri
tion inthe �rst line. (The fa
t that we have \
0" in (12) where we have \0" in (4) is anunimportant di�eren
e.) This is usually the best we 
an do; only o

asionally do wehave situations in whi
h we 
an take the \window" to be the whole xy plane and stillget a unique impli
itly-de�ned fun
tion.The uniqueness of a fun
tion � that is guaranteed by a statement of the form (12)allows us to use terminology that is less awkward than what we used in De�nition2.2. Spe
i�
ally, whenever a statement of the form (12) holds true, we 
an dispensewith the phrase \regarded as a fun
tion of the �rst variable of G" in that de�nition,or even naming the fun
tion � at all. We may simply say the following:Within the re
tangle I1 � J1, the equation G(x; y) = 
0 determines yuniquely as a fun
tion of x.Optionally, we may put the word \impli
itly" in front of \determines" above. Doingso emphasizes the fa
t that we are not saying we know how to produ
e a formulathat tells us how to 
ompute y from x (we may or may not be able to produ
e su
ha formula, depending on the fun
tion G); we are simply saying that for ea
h x 2 I1,one and only one value of y is singled out. But an unambiguous assignment of a valuey to ea
h x 2 I1 is exa
tly what \fun
tion on I1" means, by de�nition. No expli
itformula is required in the de�nition of \fun
tion".Similarly, if there exists a fun
tion � de�ned on J1 su
h thatfor all points (x; y) 2 I1 � J1,G(x; y) = 
0 if and only if x = �(y) (13)then we 
an say simply that within the re
tangle I1 � J1, the equation G(x; y) = 
0determines x uniquely as a fun
tion of y. Thus, when 
ondition (13) is met, we donot have to write a whole new de�nition analogous to De�nition 2.2, with \regardedas a fun
tion of the �rst variable" repla
ed with \regarded as a fun
tion of the se
ondvariable", and with \G(x; �(x)) = 0" repla
ed with \G(�(y); y) = 0".When either (12) or (13) holds for some re
tangle I1�J1, we 
all � an impli
itly-de�ned fun
tion.Exer
ise. Look ba
k at Figure 1. For whi
h points (x0; y0) on the graph is it not truethat there is an open re
tangle 
ontaining (x0; y0) on whi
h the equation in 
aptiondetermines y uniquely as a fun
tion of x? (Don't try to �nd the values of x0 and y0;just show with your pen
il where these \bad" points are on the graph.)Now, let us get ba
k to di�erential equations:9



De�nition 2.4 (temporary) We 
all an equation G(x; y) = 0 an impli
itsolution(one word, for now) of a di�erential equationF(x; y; dydx) = 0 (14)(for a given F) if(i) the equation G(x; y) = 0 impli
itly determines at least one fun
tion � that isa solution of (14), and(ii) every di�erentiable fun
tion � determined by the equation G(x; y) = 0 on anopen interval is a solution of (14).De�nition 2.5 If � is a di�erentiable fun
tion determined impli
itly by animpli
itsolution G(x; y) = 0 of (14), then we 
all � an impli
itly-de�ned solutionof (14).Example 2.6 Consider the di�erential equationx + y dydx = 0: (15)We 
laim that the equation x2 + y2 � 1 = 0 (16)is an impli
itsolution of (15). (Equivalently, so is the equation x2+y2 = 1.) To verifythis, we 
he
k that 
riteria (i) and (ii) of De�nition 2.4 are satis�ed:� Criterion (i). Let �1(x) = p1� x2 as in (8), but restri
ted to the open interval(�1; 1). Note that G(x; �1(x)) = 1 for all x 2 (�1; 1), so �1 is a fun
tionimpli
itly determined by the equation G(x; y) = 1 (the 
onditions of De�nition2.2) are met).We 
ompute �01(x) = �xp1�x2 . Thus if we substitute y = �1(x) into theleft-hand side of (15), we have x +p1� x2 �xp1� x2= 0 for all x 2 (�1; 1);so �1 is a solution of (15). Thus 
riterion (i) is satis�ed4.4We 
ould just as well have used the fun
tion �2 de�ned by �2(x) = � p1� x2. But to showthat 
riterion (i) is met it suÆ
es to 
ome up with one fun
tion � that works, so we 
hose the �that involves (slightly) less writing. 10



� Criterion (ii). Suppose � is any di�erentiable fun
tion determined impli
itly by(16) on some open interval I. Then we havex2 + �(x)2 � 1 = 0identi
ally in x on the interval I. Di�erentiating, we therefore have2x + 2�(x)�0(x) = 0 for all x 2 I:Therefore � is a solution of the equation2x+ 2y dydx = 0on I. Dividing by 2 we see that � is a solution of (15) on I. Therefore 
riterion(ii) is satis�ed.Hen
e (16) is an impli
itsolution of (15), and the fun
tion �1 is an impli
itly-de�nedsolution of (15).There are a
tually two impli
itly-de�ned solutions in this example: �1 and ��1(the fun
tion that we 
alled �2 in (9)). The �rst of these is the fun
tion impli
itlyde�ned by x2 + y2 = 1 on the re
tangle (�1; 1) � (0;1); the se
ond is the fun
tionimpli
itly de�ned by x2 + y2 = 1 on the re
tangle (�1; 1)� (�1; 0). Both fun
tionsare solutions of (15).Example 2.7 We 
laim that(y � ex)(x2 + y2 � 1) = 0 (17)is not an impli
itsolution of (15). To verify this 
laim, it suÆ
es to show that at leastone of 
riteria (i) and (ii) in De�nition 2.4 is not met. For this, we observe that ify = ex, then (17) is satis�ed. Thus, the fun
tion � de�ned on any open interval Iby �(x) = ex is a fun
tion determined impli
itly by (17). However, if we substitutey = ex into (15), we get x + e2x = 0: (18)Is it possible to 
hoose the interval I in su
h a way that (18) holds true for allx 2 I? No, for if there were su
h an interval I, the left-hand side of (18) would be adi�erentiable fun
tion on I, so we 
ould di�erentiate both sides of (18) and obtain1 + 2e2x = 0: (19)11



But there isn't even a single value of x for whi
h this is true; 1 + 2ex > 0 for all x.Thus there is no open interval I on whi
h � is a solution of (15).Thus � is a di�erentiable fun
tion determined impli
itly by (17) that is not asolution of (15). Therefore 
riterion (ii) in De�nition 2.4 is not met, so equation (17)is not an impli
itsolution of (15). (Of 
ourse, the same reasoning shows that theequation y � ex = 0 is not an impli
itsolution of (15).)We mention that in this example, 
riterion (i) is met. The same fun
tion � usedin Example 2.6 is a solution of (15) that is de�ned impli
itly by (17).Example 2.8 The equation x2 + y2 + 1 = 0 (20)is not an impli
itsolution of (15), be
ause it fails 
riterion (i) of De�nition 2.4. Thereare no real numbers x; y at all for whi
h (20) holds, let alone an open interval I onwhi
h (20) impli
itly determines a fun
tion of x. Sin
e (20) determines no fun
tions� whatsoever on any open interval I, 
riterion (ii) of De�nition 2.4 is moot.Similarly, the equation x2 + y2 = 0 (21)is not an impli
itsolution of (15). In this 
ase there is a pair of real numbers (x; y)that satis�es (21), but there is no open x-interval I on whi
h, for ea
h x 2 I, there isa real number y for whi
h (21) is satis�ed.Now let us make an observation about impli
itsolutions:An impli
itsolution of a DE is not a solution of that DE. (22)The reason is simple. A solution of a DE is a (one-variable) fun
tion. An impli
-itsolution of a DE is a (two-variable) equation. These are two 
ompletely di�erentanimals.However, there is an \abuse of terminology" that we have already said is permis-sible. When a fun
tion � is a solution of a given di�erential equation F(x; y; dydx) = 0,we have said that we would allow ourselves to 
all the equation y = �(x) a solutionof that DE. We must re
ognize that the equation y = �(x) is not a fun
tion, of anynumber of variables. An equation may be used to de�ne a fun
tion, as in \�(x) = ex".But \�" is not the same thing as \the de�nition of �", any more than an elephant isthe same thing as the de�nition of an elephant.We allow ourselves to say, te
hni
ally in
orre
tly, that \y = x2 is a solutionof dydx = 2x", be
ause that wording is so mu
h less awkward than \the fun
tion �12



de�ned by �(x) = x2 is a solution of dydx = 2x".5 Note that the equation \y = �(x)",whi
h we are allowing ourselves to 
all a solution of a DE if � is a solution of thatDE, is equivalent to the equation \y � �(x) = 0", whi
h is an equation of the formG(x; y) = 0. In the same spirit, we make the following de�nition:De�nition 2.9 We say that an equation G(x; y) = 0 is an impli
it solution (twowords) of a given di�erential equation if it is an impli
itsolution (one word) of thatdi�erential equation, as de�ned in De�nition 2.4.Combining this de�nition with observation (22), we have a linguisti
 paradox:An impli
it solution of a DE is not a solution of that DE.In other words, the meaning of \impli
it solution" 
annot be obtained by interpreting\impli
it" as an adje
tive modifying \solution". One must regard the two-word phrase\impli
it solution" as a single term, a 
ompound noun whose meaning 
annot bededu
ed from the meanings of the two words 
omprising it. That is why we initiallyused the the made-up word \impli
itsolution", whi
h the student is not likely to �ndoutside of these notes. Most textbooks give a de�nition of \impli
it solution" that issimilar to our de�nition of \impli
itsolution"6.Of 
ourse, in English there are many 
ompound nouns of the form \<adje
tive><noun>" that do not mean \a spe
ial type of <noun>". A prairie dog is not a typeof dog.Note that the terminology \impli
itly-de�ned solution" (De�nition 2.5) does notsu�er from any paradox. An impli
itly-de�ned solution of a DE is a solution of thatDE. It meets the 
riteria of De�nition 2.1 perfe
tly.Our approa
h to Example 2.6 above relied on our ability to produ
e an expli
itformula for a \
andidate solution" of the given DE. What if, in pla
e of (16), we hadbeen given an equation so 
ompli
ated that we 
ould not solve for y and produ
e5Only slightly more awkward than \y = x2 is a solution of dydx = 2x" is the following type ofphrasing that you may have seen instru
tors or textbook-authors use: \The fun
tion �(x) = x2 is asolution of dydx = 2x." This phrasing is 
ertainly mu
h less awkward than, \The fun
tion � de�nedby �(x) = x2 is a solution of dydx = 2x." The reason we try not to use phrasing like \The fun
tion�(x) = x2 . . . " in these notes is that the fun
tion is �, not �(x). The obje
t �(x)|a number|isthe output of the fun
tion � when the input is 
alled x.However, pra
ti
ally all math instru
tors at least o

asionally use phrasing like \The fun
tion�(x) = x2", and some use it all the time. The language needed to avoid su
h phrasing is oftenextremely 
onvoluted (unless the student has been introdu
ed to the notation \x 7! x2"). So,while this author does not like it, this type of phrasing is generally regarded as \permissible abuseof terminology". Nonetheless it is important that the student understand the di�eren
e betweena fun
tion and the output of that fun
tion. To help foster this understanding, we (mostly) avoidthis parti
ular abuse of terminology in these notes, even though we allow 
ertain other abuses ofterminology.6Ex
ept that most negle
t to in
lude 
riterion (ii).13



a 
andidate-solution � to plug into the DE? This is where the Impli
it Fun
tionTheorem 
omes to the res
ue.Example 2.10 7 Show that the equationx + y + exy = 1 (23)is an impli
it solution of (1 + xexy)dydx + 1 + yexy = 0: (24)To show this, we start with the observation that, writingG(x; y) = x+y+exy, wehave G(0; 0) = 1. So, let us 
he
k whether the Impli
it Fun
tion Theorem applies tothe equation G(x; y) = 1 near the point (0; 0) (i.e. taking (x0; y0) = (0; 0) in Theorem2.3). We 
ompute �G�x (x; y) = 1 + yexy;�G�y (x; y) = 1 + xexy:Both of these fun
tions are 
ontinuous on the whole xy plane, and �G�y (0; 0) = 1 6= 0.Thus, the hypotheses of Theorem 2.3 are satis�ed (with R = (�1;1) � (1;1)).Therefore the 
on
lusion of the theorem holds. We do not a
tually need the whole
on
lusion; all we need is this part of it: there is an open interval I1 
ontaining 0,and a di�erentiable fun
tion � de�ned on I1, su
h that G(x; �(x)) = 1 for all x 2 I1.Now we use the same method by whi
h we 
he
ked 
riterion (ii) in Example 15:impli
it di�erentiation (i.e. 
omputing derivatives of an expression that 
ontains animpli
itly-de�ned fun
tion). Let us simplify the notation a little by writing y(x) =�(x). Then x+ y(x) + exy(x) = 1 for all x 2 I1;) 1 + dy(x)dx + exy(x)�y(x) + xdy(x)dx � = 0 for all x 2 I1;) (1 + xexy(x))dy(x)dx + 1 + y(x)exy(x) = 0 for all x 2 I1:Therefore � is a solution of (24). Thus, 
riterion (i) in De�nition 2.4 is satis�ed.The exa
t same impli
it-di�erentiation argument shows that if  is any di�erentiable7This example is taken from Nagle, Sa�, and Snider, Fundamentals of Di�erential Equations andBoundary Value Problems, 5th ed., Pearson Addison-Wesley, 2008.14



fun
tion determined on an open interval by (23), then  is a solution of (24). There-fore 
riterion (ii) in De�nition 2.4 is also satis�ed. Hen
e (23) is an impli
it solutionof (24).Looking ba
k at Example 2.6, 
ould we have shown that 
riterion (i) of De�ni-tion 2.4 is satis�ed using the te
hnique of Example 2.10, using the fun
tion G(x; y) =x2+y2? Absolutely! For (x0; y0) we 
ould have taken any point of the 
ir
le x2+y2 = 1other than (�1; 0). The partial derivatives are �G�x (x; y) = 2x and �G�y (x; y) = 2y. Asin Example 2.10, the partial derivatives of G are 
ontinuous on whole xy plane again8,and sin
e we are 
hoosing a point (x0; y0) for whi
h y0 6= 0, we have �G�y (x0; y0) 6= 0.Thus, the Impli
it Fun
tion Theorem applies, guaranteeing the existen
e of a di�er-entiable, impli
itly-de�ned fun
tion �, with �(x0) = y0. We 
an then di�erentiateimpli
itly, as we did when we 
he
ked 
riterion (ii) in Example 2.6 (and as we did to
he
k both 
riteria in Example 2.10), to show that � is a solution of (15). If our point(x0; y0) has y0 > 0, then the solution of (15) that we get is the fun
tion �1 de�ned by�1(x) = p1� x2; if y0 < 0 then the solution of (15) that we get is ��1.The student may wonder how we 
ould have used the method of Example 2.10had we not been 
lever (or lu
ky) enough to be able to �nd a point (x0; y0) that lay onthe graph of our equation G(x; y) = a given 
onstant. The answer is that we 
ouldnot have, unless we had some other argument showing that the graph 
ontains atleast one point, and, more restri
tively, that it 
ontains at least one point at whi
h�G�y is not 0. For example, had we started with the equationx + y + exy = 2 (25)instead of (23), we would have had a mu
h harder time. We 
ould show by impli
itdi�erentiation that every di�erentiable fun
tion determined by 25 is a solution of24|thus, that 
riterion (ii) of De�nition 2.4 is satis�ed|but that would not tell usthat there is even a single fun
tion of x de�ned by (25), or even that the graph of(25) 
ontains any points whatsoever. Con
eivably, we 
ould be in the same situationas in Example 2.8, in whi
h all di�erentiable fun
tions impli
itly de�ned by (20)|allnone of them|are solutions of our di�erential equation.It so happens that we 
an show that the graph of (25) 
ontains a point at whi
h�G�y is not 0. However, doing that would require a digression that we do not wantto take right now. Instead, let us 
onsider a di�erent type of problem that 
an behandled far more easily, even though the fun
tion G(x; y) is mu
h more 
ompli
ated.Example 2.11 Show that there is a number 
0 for whi
h the equation8This does not always happen|Examples 2.6 and 2.10, and several other examples in these notes,just happen to have G's with this property. 15



ex + x + y5 � y4 + y3 + y2 + xy2 = 
0 (26)is an impli
it solution of the di�erential equationex + 1 + y2 + (5y4 � 4y3 + 3y2 + 2y + 2xy)dydx = 0: (27)To approa
h this problem, we start with a variation on the se
ond step of Ex-amples 2.6 and 2.10: we assume that there is a number 
0 for whi
h (26) impli
itlydetermines a di�erentiable fun
tion �, say on an interval I. On the interval I, wemay then impli
itly di�erentiate the equation (26)|i.e. di�erentiate with respe
t tox both sides of the equation we obtain by substituting \y = �(x)" into (26). To keepthe notation as simple as possible, we will just write \y" instead of \y(x)" or \�(x)"when we di�erentiate. (This is usually what we do when we di�erentiate impli
itly;we just haven't done it until now in these notes.) Then, using the 
hain rule andprodu
t rule, we �ndex + 1 + 5y4 dydx � 4y3 dydx + 3y2dydx + 2y dydx + y2 + 2xy dydx = 0;whi
h is equivalent to equation (27).Thus, all di�erentiable fun
tions � determined impli
itly by an equation of theform (26) will be solutions of (27). Thus for any 
0 for whi
h (26) impli
itly determinesa di�erentiable fun
tion, equation (26) will be an impli
it solution of (27).So, if we 
an show that there is su
h a 
0, we'll be done. For this, we look to theImpli
it Fun
tion Theorem to help us out. Letting G(x; y) denote the left-hand sideof (26), we 
ompute �G�x (x; y) = ex + 1 + y2; (28)�G�y (x; y) = 5y4 � 4y3 + 3y2 + 2y + 2xy: (29)Both partials are 
ontinuous on the whole xy plane, so whatever point we 
hoose for(x0; y0), the Impli
it Fun
tion Theorem's hypothesis that the partials be 
ontinuouson some open re
tangle 
ontaining (x0; y0) will be satis�ed. Let's look for a point(x0; y0) at whi
h �G�y is not 0. From our 
omputation above,�G�y (x; y) = y(5y3 � 4y2 + 3y + 2 + 2x): (30)So we de�nitely don't want to 
hoose y0 = 0. But if we 
hoose y0 to be anythingother than 0, we 
an 
ertainly �nd an x0 for whi
h the quantity inside parenthesesisn't zero. Let's make things easy on ourselves and 
hoose y0 = 1. Then16



5y30 � 4y20 + 3y0 + 2 + 2x0 = 6 + 2x06= 0 as long as x0 6= �3:So if we take, for example, (x0; y0) = (0; 1), then �G�y (x0; y0) 6= 0. For this 
hoi
eof (x0; y0), we have G(x0; y0) = 3. The Impli
it Fun
tion Theorem then guaranteesus that on some open x-interval 
ontaining 0, the equation G(x; y) = 3 impli
itlydetermines a di�erentiable fun
tion of x. By the �rst part of our analysis (the partthat involved impli
it di�erentiation), this guarantees that the equation G(x; y) = 3is an impli
it solution of (27). So we have found a 
0 with the desired property.As you probably noti
ed, in this example our expressions (28){(29) for the partialderivatives of G appeared also in (27). This is no a

ident. As students who havetaken Cal
ulus 3 know, the multivariable 
hain rule implies that if we impli
itlydi�erentiate the equation G(x; y) = 
0 with respe
t to x, we obtain the equation�G�x + �G�y dydx = 0: (31)With foresight, the author 
hose the DE (27) to be exa
tly the equation (31) forG(x; y) equal to the left-hand side of (26). For most DEs, it will not be true thatthere is a value of 
0 for whi
h (26) is an impli
it solution.It may seem to you that the author 
heated, by 
hoosing essentially the only DEfor whi
h the fa
t you were instru
ted to establish was a
tually a true fa
t. But youwill see later that equations of the form (31) a
tually 
ome up a lot.You may also have noti
ed, in Example 2.11, that we 
ould have 
ome up witha whole lot of points (x0; y0) that \worked", in the sense that the hypotheses of theImpli
it Fun
tion Theorem would have been met. All we needed was a point (x0; y0)for whi
h y(5y3 � 4y2 + 3y + 2 + 2x)j(x0;y0) 6= 0. But \almost every" 
hoi
e (x0; y0)has this property; we just need y0 6= 0 and x0 6= � 12(5y30 � 4y20 + 3y0 + 2). For ea
hnonzero 
hoi
e of y0, there's only one \bad" 
hoi
e of x0; every other real number isa good 
hoi
e of x0. So the 
0's for whi
h our method shows that (26) is an impli
itsolution of (27), are all the numbers G(x0; y0) we 
an get by plugging in \good"
hoi
es of (x0; y0) (i.e. all 
hoi
es with y0 6= 0 and x0 6= � 12(5y30 � 4y20 + 3y0 + 2)).We 
an expe
t this set of numbers to be a large subset of the range of G|perhapsthe whole range of G. A 
hallenging question for you to think about is this: are thereany numbers 
0 for whi
h (26) is not an impli
it solution of (27)? Let's strip awaythe distra
ting 
omplexity of the fun
tion G in (26) and pose the analogous questionfor a mu
h simpler G, the one in Example 2.10:Question: Are there any numbers 
0 for whi
h the equationx + y + exy = 
017



is not an impli
it solution of (24)? (Note that (24) is the equation (31) for the fun
tionG de�ned by G(x; y) = x + y + exy.)This question will not be answered in these notes; it is left as a 
hallenge for thestudent. We point out that the answer to su
h a question will not be the same for allfun
tions G that we 
ould put on the left-hand side of \G(x; y) = 
0". For example,if we take G(x; y) = x2 + y2, then only for 
0 > 0 is the equation G(x; y) = 
0 animpli
it solution of (15) (whi
h is the equation (31) for this G, simpli�ed by dividingby 2). But if we take G(x; y) = x + y, then for every real number 
0 the equationG(x; y) = 
0 is an impli
it solution of the analogous di�erential equation, 1 + dydx = 0,as you 
an see easily by expli
itly solving the equation x+ y = 
0 for y in terms of x.The Impli
it Fun
tion Theorem is one of the most important theorems in 
al
u-lus, and it is 
ru
ial to the understanding of impli
it solutions of di�erential equa-tions. However, it does have its limitations: there are di�erential equations that haveimpli
itly-de�ned solutions that are not fun
tions given by the Impli
it Fun
tion The-orem, as the next example shows.Example 2.12 Consider the algebrai
 equationx2 � y2 = 0 (32)and the di�erential equation x� y dydx = 0: (33)Equation (32) is equivalent to y = �x. Thus on any interval I, equation (32) impli
itlydetermines two di�erentiable fun
tions � of x, namely �(x) = x and �(x) = �x. Bothof these are solutions of (33). Therefore (32) is an impli
it solution of (33), and thetwo fun
tions � above are impli
itly-de�ned solutions of (33), on any interval.The point (x; y) = (0; 0) satis�es (32). But on no open re
tangle 
ontaining thepoint (0; 0) does (32) uniquely determine y as a fun
tion of x. Every su
h re
tanglewill 
ontain both a portion of the graph of y = x and a portion of the graph of y = �x(see Figure 3; draw any re
tangle en
losing the origin). Thus there are no intervalsI1 
ontaining 0 (our x0) and J1 
ontaining 0 (our y0) for whi
h (12) holds.Does this 
ontradi
t the Impli
it Fun
tion Theorem? No|the theorem says onlythat there are I1 and J1 with the property (12) if the hypotheses of the theorem are met.But in the 
urrent example, the fun
tion G for whi
h (32) is of the form G(x; y) = 
0is given by G(x; y) = x2 � y2. Thus �G�y (x; y) = �2y, and if we take (x0; y0) = (0; 0)then �G�y (x0; y0) = 0. One of the hypotheses of the theorem is not met, and thereforewe 
an draw no 
on
lusion from the theorem. The two fun
tions � above are perfe
tlygood impli
itly-de�ned solutions of (33); they just are not solutions that the Impli
it18



Figure 3: The graph of x2 � y2 = 0.Fun
tion Theorem �nds.For most two-variable fun
tionsG that we en
ounter in pra
ti
e, the \bad points"(x0; y0) at whi
h the Impli
it Fun
tion Theorem does not apply are of two types:points at whi
h the graph of G(x; y) = G(x0; y0) has a verti
al tangent (as is the
ase for the equations graphed in Figures 1 and 2), and points at whi
h two or moresmooth 
urves interse
t (as in Figure 3; in this simplest of examples the interse
ting
urves are straight lines).The equation x2�y2 = 0 has another feature that none of our previous exampleshave illustrated. On any open x-interval 
ontaining the origin, the equation impli
-itly determines two di�erentiable fun
tions of x, but four 
ontinuous fun
tions of x:�(x) = x; �(x) = �x, �(x) = jxj, and �(x) = �jxj. In all of our previous examples,on any open interval the 
ontinuous impli
itly-de�ned fun
tions and the di�erentiableimpli
itly-de�ned fun
tions were the same.2.3 Maximal and general solutions of derivative-form DEsDe�nition 2.13 For a given F, the general solution of the di�erential equationF(x; y; dydx) = 0 on an interval I is the 
olle
tion of all solutions on I.Often we want to talk about the 
olle
tion of all solutions of a given di�erentialequation without pinning ourselves down to a spe
i�
 interval I. For example, it mayhappen we 
an write down a family of solutions, distinguished from ea
h other by the
hoi
e of some 
onstant C, but for whi
h the domain depends on the value of C andhen
e di�ers from solution to solution. This suggests making the following de�nition:19



De�nition 2.14 (temporary) for a given F, the general solution of the di�erentialequation F(x; y; dydx) = 0 (34)is the 
olle
tion of all solutions of (34), where \solution" is de�ned as in the se
ondpart of De�nition 2.1. Said another way, the general solution of (34) is the 
olle
tionof pairs (I; �), where I is an open interval and � is a solution of (34) on I.We warn the student that the terminology \general solution" (with or withoutthe restri
tion \on an interval I") is not agreed upon by all mathemati
ians (ex
eptfor linear equations in \standard linear form", whi
h we have not yet dis
ussed inthese notes), for reasons dis
ussed at the end of this subse
tion.The student should not overlook our 
areful use of the arti
les \a" and \the" in\a solution" (De�nition 2.1) and \the general solution" (De�nition 2.14). Use of thede�nite arti
le \the" implies that we are talking about something that is unique|i.e.only one su
h thing exists. \The" should never be used by a writer (or speaker)unless s/he has already given enough information for the reader (or listener) to knowthat only one exists. Di�erential equations, even on a spe
i�ed interval, virtuallynever have just one solution (although initial-value problems usually do). The onlything that \the solution" of a given DE 
an unambiguously mean is the 
olle
tionof all solutions. Thus, to the author of these notes, \the solution of equation (1)" issynonymous with \the general solution of equation (1)". To avoid misinterpretation,in these notes we will not use the terminology \the solution" (of a given DE, in theabsen
e of an initial 
ondition); we will always say either \a solution" or \the generalsolution".9There is a problem with De�nition 2.14 that we will dis
uss shortly. However,in their �rst exposure to the subje
t, many students will not have the mathemati
alsophisti
ation needed to understand the problem or the way to �x it. Therefore in a�rst 
ourse on di�erential equations, it is a

eptable to use De�nition 2.14as the de�nition of \general solution", and students in this author's 
oursewill not be penalized for doing so. Some students, however, may re
ognize (even-tually, if not immediately) that there is a problem. The dis
ussion below is for thosestudents, and any others who might be interested in what the problem is. Studentswho are not interested, or have trouble understanding the dis
ussion, mayskip to Example 2.19 and simply ignore the word \maximal" wherever itappears.To illustrate the problem, let us suppose that we are able to show for everysolution � of some di�erential equation, there is a 
onstant C su
h that9Not all mathemati
ians are equally pi
ky about terminology, and the author 
annot guaranteethat your instru
tor will so stri
tly separate the meanings of \a" and \the", or will agree that theonly logi
ally possible meaning of \the solution of a (given) DE" is the general solution of that DE.20



�(x) = 1x� C : (35)Remembering that the domain of a solution of a DE is required to be an interval,we look at equation (35) and say, \Okay, for ea
h C this formula gives two solutions,one on (�1; C) and (C;1)." But even this is not te
hni
ally 
orre
t. These arenot the only two intervals on whi
h equation (35) de�nes solutions. If � is a solutionon (C;1), then it satis�es the DE at every point of this interval. Therefore it alsosatis�es the DE at every point of (C;C + 1), at every point of (C + 26:4; C + 93:7),and on any open subinterval of (�1; C) or (C;1) whatsoever.This example illustrates that the 
olle
tion of pairs (I; �) referred to in De�nition2.14 has a 
ertain redundan
y. There is terminology that allows us to speak more
learly about this redundan
y:De�nition 2.15 Let � be a fun
tion on an interval I and let I1 be a subinterval ofI. The restri
tion of � to I1, denoted �jI1, is de�ned by�jI1 (x) = �(x) for all x 2 I1 :(We leave �jI1 (x) unde�ned for x not in I1.) We say that a fun
tion  is a restri
tionof � if it is the restri
tion of � to some subinterval.If ~I is an interval 
ontaining I, and ~� is a fun
tion on ~I whose restri
tion to I is�, then we 
all ~� an extension of �.10Equivalently: if ~I is an interval of whi
h I is a subinterval, and ~� and � arefun
tions de�ned on ~I and I respe
tively, then� is a restri
tion of ~� () the graph of � is part of the graph of ~�() ~� is an extension of �:(The symbol \() " means \if and only if".)It may seem silly at �rst, and even outright 
onfusing, to distinguish so 
arefullybetween a fun
tion and its restri
tion to a smaller domain, but there are many timesin mathemati
s in whi
h it is important to do this. For example, the sine fun
tiondoes not have an inverse, but the restri
tion of sine to the interval [��=2; �=2℄ does,and the inverse of this restri
ted fun
tion is the fun
tion we 
all sin�1 or ar
sin.If a fun
tion � is a solution of a given DE on some interval I then the restri
tionof � to any subinterval I1 is also a solution. But of 
ourse, if we know the fun
tion10The same de�nition applies even when the domains of interest are not intervals; e.g. for afun
tion � with any domain whatsover, the restri
tion of � to any subset of its domain is de�nedthe same way. But for fun
tions of one variable, the DE student should remain fo
used on domainsthat are intervals. 21



�, then we know every spe
k of information about �jI1. Therein lies the redundan
yof De�nition 2.14: the de�nition names a mu
h larger 
olle
tion of fun
tions than isneeded to 
apture all the information there is to know about solutions of (34). Wewill see below that we 
an be more eÆ
ient.While we 
an always restri
t a solution � of a given DE to a smaller intervaland obtain a (te
hni
ally di�erent) solution, a more interesting and mu
h less trivialproblem is whether we 
an extend � to a solution on a larger interval. The extension
on
ept is always in the ba
kground whenever we talk about \the domain of a solutionof an initial-value problem". When we say these words, it's always understood thatwe're looking for the largest interval on whi
h the formula we're writing down isa
tually a solution of the given IVP. This is the di�erential-equations analog of whatis often 
alled the implied domain of a fun
tion represented by a formula, su
h asf(x) = 1x , in Cal
ulus 1 or pre
al
ulus 
ourses. The implied domain of this fun
tionf is (�1; 0) S (0;1) (also frequently written as \fx 6= 0g"). However, if we aretalking about 1x as a solution of the IVPdydx = �x�2; y(3) = 13 ; (36)then we would 
all \y = 1x" a solution of this IVP only on (0;1), not on the wholedomain of the formula \ 1x ".With these ideas in mind, we 
all a solution � of a given DE (or initial-valueproblem) on an interval I maximal or inextendible if � 
annot be extended to anyopen interval ~I stri
tly 
ontaining I, while still remaining a solution of the DE.Example 2.16 All the fun
tions � below are di�erent fun
tions, even though we areusing the same letter for them.� �(x) = 1x ; 0 < x < 5, is a solution of dydx = �x�2, but not a maximal solution.It is also a solution of the IVP (36).� �(x) = 1x ; 2:9 < x < 16:204, is another solution of dydx = �x�2, and of the IVP(36), but not a maximal solution.� �(x) = 1x ; 3:1 < x < 16:204, is another solution of dydx = �x�2, but it is neithera maximal solution nor a solution of the IVP (36),� �(x) = 1x ; x 2 (0;1) is a maximal solution of dydx = �x�2, and is the maximalsolution of the IVP (36).� �(x) = 1x ; x 2 (�1; 0) is a di�erent maximal solution of dydx = �x�2. It is nota solution of the IVP (36).� �(x) = 1x ; x 2 (�1;�p2) is another non-maximal solution of dydx = �x�2.22



� �(x) = 1x + 37; x 2 (0;1) is yet another maximal solution of dydx = �x�2. It isnot a solution of the IVP (36).Example 2.17 The maximal solutions of the di�erential equation dydx = se
2 x are�(x) = tanx + C; (n� 12)� < x < (n+ 12)�; n an integer; C a 
onstant(one maximal solution for ea
h pair of values (n; C) with n an integer and C real).It 
an be shown that every non-maximal solution of a DE is the restri
tion of somemaximal solution of that DE.11 Thus the 
olle
tion of maximal solutions \
ontains"all solutions in the sense that the graph of every solution is 
ontained in the graph ofsome maximal solution. So, better than De�nition 2.14 is this:De�nition 2.18 For a given F, the general solution of (1) is the 
olle
tion of allmaximal solutions of (1).(This de�nition supersedes De�nition 2.14.)Example 2.16 demonstrates, we hope, the e
onomy gained by in
luding the word\maximal" in this de�nition. The student will probably agree that, even prior towriting down De�nition 2.18, maximal solutions are what we really would have beenthinking of had we been asked what all the solutions of \ dydx = �x�2" are|we justmight not have realized 
ons
iously that that's what we were thinking of.Example 2.19 The general solution of dydx = x may be written asy = 12x2 + C: (37)In this 
ontext equation (37) represents a one-parameter family of maximal solutions�C , ea
h of whi
h is de�ned on the whole real line. Here C is an arbitrary 
onstant;every real number C gives one solution of the DE. We allow ourselves to write (37) asshort-hand for \the 
olle
tion of fun
tions f�C j C 2 Rg, where �C(x) = 12x2 + C".Example 2.20� The general solution of dydx = �x�2; x > 0 (38)(meaning that we are interested in this di�erential equation only for x > 0) maybe written as11Said another way, every solution 
an be extended to at least one maximal solution. Maximalextensions always exist, but they are not always unique.23



y = 1x + C; x > 0; (39)a one-parameter family of maximal solutions. Be
ause the restri
tion x > 0 isstated expli
itly in (38), it is permissible to leave out the \x > 0" when writingthe general solution; we may simply write the general solution asy = 1x + C (40)� The general solution of dydx = �x�2; (41)with no interval spe
i�ed, may also be written as (40)|i.e. it is permissible towrite it this way, in the interests of saving time and spa
e. However, be
auseno interval was spe
i�ed when the DE was written down, we must 
onsider allpossible intervals. Therefore, in this 
ontext, equation (40) does not representa one-parameter family of maximal solutions; it represents two one-parameterfamilies of maximal solutions12. Equation (40) is a

eptable short-hand forthe union of the two families of fun
tionsf�C j C 2 Rg; f C j C 2 Rgwhere �C(x) = 1x + C; x > 0and  C(x) = 1x + C; x < 0:
9>>>>>>>>=>>>>>>>>; (42)

(The union of the two families means the 
olle
tion of fun
tions that are in onefamily or the other.) The solution y = 1x +6 on fx < 0g (the fun
tion  6 in thenotation of (42)) is no more 
losely related to the solution y = 1x +6 on fx > 0g12Many 
al
ulus textbooks, and espe
ially integral tables, foster a misunderstanding of the in-de�nite integral. By de�nition, for fun
tions f that are 
ontinuous on an open interval or a unionof disjoint open intervals, \R f(x)dx" means \the 
olle
tion of all antiderivatives of f". If the im-plied domain of f is an open interval, then this 
olle
tion is the same as the general solution ofdy=dx = f(x). But we must be 
areful not to interpret formulas su
h as \R x�2 dx = �x�1 + C"or \R se
2 x dx = tanx + C" as saying that every antiderivative of x�2 is of the form x�1 + C onthe whole implied domain of the integrand x�2, or that every antiderivative of se
2 x is of the formtanx+ C on the whole implied domain of the integrand se
2 x.The Fundamental Theorem of Cal
ulus tells us that on any open interval on whi
h a fun
tion fis 
ontinuous, any two antiderivatives of f di�er by an additive 
onstant. (Equivalently, if F is anysingle antiderivative of f on this interval, then every antiderivative of f on this interval is F+C forsome 
onstant C.) It does not make any statement about antiderivatives on domains that are not
onne
ted, su
h as the implied domain of f(x) = x�2 or the implied domain of f(x) = se
2 x.24



(the fun
tion �6) than it is to the solution y = 1x + 7 on fx < 0g (the fun
tion 7) ; in fa
t it is mu
h less 
losely related. (The fun
tion  7 at least lies in thesame family as  6, where as �6 does not.)Alternative ways of writing the general solution of dydx = �x�2 are\fy = 1x + C; x > 0g and fy = 1x + C; x < 0g" (43)and \fy = 1x + C1; x > 0g and fy = 1x + C2; x < 0g": (44)In (43), it is understood that, within ea
h family, C is an arbitrary 
onstant, andthat the two C's have nothing to do with ea
h other. In (44), C1 and C2 againare arbitrary 
onstants, and we have simply 
hosen di�erent notation for themto emphasize that they have nothing to do with ea
h other. But all three forms(40), (43), and (44) are a

eptable ways of writing the general solution, as longas we understand what they mean, and are 
ommuni
ating with someone elsewho understands what they mean. These forms do not exhaust all permissibleways of writing the general solution; there are other notational variations onthe same theme.Example 2.21 The general solution of dydx = se
2 x may be written asy = tan x+ C; (45)or as y = tanx + C; (n� 12)� < x < (n+ 12)�; n an integer; (46)or as y = tan x+ Cn; (n� 12)� < x < (n + 12)�; n an integer; (47)or in various other ways that impart the same information. As in the \ dydx = �x�2"example, it is understood that C and Cn above represent arbitrary 
onstants (i.e.that they 
an assume all real values). But whi
hever of the forms (45){(47) (orother variations on the same theme) that we 
hoose for writing the general solutionof dydx = se
2 x, we must not forget that ea
h of these forms represents an in�nite
olle
tion of one-parameter families of maximal solutions, one family for ea
h intervalof the form (n� 12)� < x < (n + 12)� (n an integer).25



Example 2.22 The general solution of the separable equationdydx = �y2 (48)may be written as �y = 1x� C� and y � 0; (49)or as y = 1x� C or y = 0; (50)or in various other ways that impart the same information13. In the given 
ontext,the solution that is the 
onstant fun
tion 0 may be written as \y � 0" (whi
h, in this
ontext, is read \y identi
ally zero") or as y = 0. Sin
e a solution of (48), expressedin terms of the variables in (48), is fun
tion of x, the only 
orre
t interpretation of\y = 0" in (50) is \y is the 
onstant fun
tion whose value is zero for all x", not \yis a real number, spe
i�
ally the number 0". An instru
tor may sometimes write a
onstant fun
tion using the identi
ally-equal-to symbol \�", espe
ially in the earlyweeks of a DE 
ourse, to make sure that students are absolutely 
lear what is meant;at other times, when there is little possibility of 
onfusion, (s)he may just use theordinary \=" symbol.Note that for ea
h C, the equation \y = 1x�C " represents not one maximalsolution, but two: one on the interval (C;1) and one on the interval (�1; C).This example is very di�erent from our previous ones. For the DE \ dydx = �x�2",every maximal solution had domain either (�1; 0) or (0;1), and on ea
h of theseintervals there were in�nitely many maximal solutions. For the DE \ dydx = se
2 x",there were in�nitely many maximal solutions on every interval of the form ((n �12)�; (n+ 12)�). By 
ontrast, for the di�erential equation (48):1. The domain of every maximal solution is di�erent from the domain of everyother.2. For every interval of the form (a;1) there is a maximal solution whose domainis that interval, namely y = 1x�a .3. For every interval of the form (�1; a) there is a maximal solution whose domainis that interval, namely y = 1x�a . (The formula is the same as for solution on(a;1) mentioned above, but we stress again that the fa
t that as solutions ofa di�erential equation, \y = 1x�a ; x > a" and \y = 1x�a ; x < a" are 
ompletelyunrelated to ea
h other.)13We do not dis
uss here how to �gure out the general solution of this DE, sin
e that is adequately
overed outside these notes. 26



4. There is one maximal solution whose domain in
ludes the domain of every other,namely y � 0.The general solution of (48) also exhibits another interesting phenomenon. Theway we have written the general solution in (49) and (50) isolates the maximal solutiony � 0 as not belonging to what appears to be a single ni
e family into whi
h theother maximal solutions fall (there is no value of C for whi
h the formula \y = 1x�C"produ
es the 
onstant fun
tion 0). But for C 6= 0, writing K = 1C ,1x� C = C�1C�1x� 1 = KKx� 1 : (51)In the right-most formula in (51), we get a perfe
tly good fun
tion|the 
onstantfun
tion 0|if we set K = 0. But this fun
tion is exa
tly what appeared to be the\ex
eptional" maximal solution in (49). Thus, we 
an rewrite the general solution(49) as �y = KKx� 1� and y = 1x : (52)Here, K is an arbitrary 
onstant, allowed to assume all real values, just as Cwas allowed to in (49). Writing the general solution this way, the two solutions withformula y = 1x (one for x > 0, one for x < 0) may be viewed as the ex
eptionalones, with all the others|in
luding the 
onstant fun
tion 0|falling into the \ KKx�1"family. This illustrates that there be more than one way of expressing the 
olle
tionof all maximal solutions as what looks like a \ni
e family" 
ontaining most of themaximal solutions, plus one or more maximal solutions that don't fall into the family.But this example also provides another instan
e of a theme to whi
h we keepreturning: how easy it is to mis-identify a family of formulas with a family of solutionsof a DE. The maximal solutions des
ribed by fy = 1x�Cg in (49) do not form oneone-parameter family; they form two. Every value of C 
orresponds to two maximalsolutions, one de�ned to the left of C and one de�ned to the right14. In (52), the\family" fy = KKx�1g is even more de
eptive: for ea
h nonzero K, the formula y =KKx�1 yields two maximal solutions, one de�ned to the left of 1=K and one de�ned tothe right, while for K = 0 the formula yields just one maximal solution.14Note to instru
tors: Of 
ourse, the 
onstant solution 0 may be viewed as the \C =1" 
ase of\y = 1x�C ", and you may even wish to tell your students that. However, this does not mean thatthe general solution is a one-parameter family parametrized by the one-point 
ompa
ti�
ation of R,i.e. the 
ir
le. Su
h a 
on
lusion would be �ne if we were talking the family of rational fun
tionsde�ned by \y = 1x�C ", but we are not; we are talking about solutions of an ODE, for whi
h the onlysensible domain is a 
onne
ted one. The natural parameter-spa
e for the 
olle
tion of all maximalsolutions of (48) is not a 
ir
le, but a �gure-8. In our next example, a logisti
 equation, the naturalparameter spa
e is two simple 
losed 
urves joined along a 
ommon line segment whose endpoints
orrespond to the 
onstant solutions. 27



In this example, one may reasonably de
ide that (49) is preferable to (52) as away of writing down the general solution. The 
onstant solution y � 0 is distinguishedfrom all the others not just by being 
onstant, but by being the only solution de�nedon the whole real line. Furthermore, the 
olle
tion of solutions des
ribed by fy =1x�Cg is more \uniform" than is the 
olle
tion des
ribed by fy = KKx�1g, in the sensethat in the �rst 
olle
tion, every value of the arbitrary 
onstant 
orresponds to twomaximal solutions, while in the se
ond 
olle
tion there is a value of the arbitrary
onstant, namely 0, for whi
h the given formula de�nes only one maximal solution.However, in the next example, we will see two di�erent ways of writing the generalsolution, neither of whi
h 
an be preferred over the other by any su
h 
onsiderations.Example 2.23 The general solution of the separable equationdydx = y(1� y) (53)may be written as �y = Ce�x + C� and y � 1: (54)Using the same method as in the previous example, one sees that the same 
olle
tionof fun
tions also be written as�y = 1Ce�x + 1� and y � 0: (55)(Here, the analog of the previous example's K has been renamed to C.) In ea
h 
ase,in the family in 
urly bra
es, the formula giving y(x) yields two maximal solutionsfor C < 0 and one maximal solution for C � 0. The C = 0 solution in (54) is the
onstant fun
tion 0, whi
h is the \ex
eptional" solution in (55). The C = 0 solutionin (55) is the 
onstant fun
tion 1, whi
h is the \ex
eptional" solution in (54). Thesituation is 
ompletely symmetri
; neither of (54) and (55) 
an be preferred over theother.The last example illustrates that for nonlinear DEs there may be no singled-outway to write the 
olle
tion of all maximal solutions (or solutions on a spe
i�ed inter-val) of a nonlinear equation as a one-parameter family, or as several one-parameterfamilies, or as one or more one-parameter families of solutions plus some \ex
eptional"solutions. Be
ause of this, many authors prefer to use the terminology \general solu-tion" only for linear DEs, and not to de�ne the term at all for nonlinear DEs.1515Note to instru
tors: This author, however, feels that too mu
h is lost this way. It is importantfor students to be able to know when they've found all solutions. This author has found that manytextbooks that avoid de�ning \general solution" for nonlinear DEs do not systemati
ally addressthe question \Have we found all solutions?" at all, or even make the importan
e of the question28



2.4 Algebrai
 equivalen
e of derivative-form DEsIn these notes we have de�ned open re
tangles. You may also be familiar with opendisks: the open disk of radius � > 0 
entered at (x0; y0) is the set of points (x; y) adistan
e less than � from (x0; y0) (equivalently, the set of points (x; y) that satisfythe stri
t inequality p(x� x0)2 + (y � y0)2 < �). More generally, a subset R of R2is 
alled an open set if for every point (x0; y0) 2 R, the set R 
ontains the open diskof some radius (possibly tiny), 
entered at (x0; y0). If you draw yourself a pi
tureyou should easily be able to 
onvin
e yourself that \open disk" and \open re
tangle"meet the de�nition of \open set", so our terminology is self-
onsistent.16Another term we will use for \open subset of R2 " is region17.De�nition 2.24 We say that two derivative-form di�erential equations, with inde-pendent variable x and dependent variable y, are algebrai
ally equivalent on a regionR if one equation 
an be obtained from the other by the operations of (i) adding toboth sides of the equation an expression that is de�ned for all (x; y) 2 R 18 , and/or
lear. This 
an reinfor
e the prevalent and unfortunate impression that the only thing one needsto do in DEs is push symbols around the page by whatever sets of rules one is told for the varioustypes of equations, and that one does not need to question whether and/or why those rules yield allthe solutions.This author feels that it is worthwhile to give the student a name for the 
olle
tion of all solutions,and to 
hoose the name that is the most 
onsistent with terminology that mathemati
ians usethroughout mathemati
s. By this 
riterion, \general solution" seems best to him.Other DE instru
tors may have di�erent 
onventions for use of the term \general solution", but we
aution the instru
tor to be wary of using \general solution" to refer to a non-exhaustive 
olle
tionof solutions for whi
h (s)he has produ
ed a ni
ely-parametrized family of formulas. As the simpleexamples 2.22 and 2.23 illustrate, the 
hoi
e of whi
h solutions should be 
onsidered part of a family,and whi
h should be 
onsidered ex
eptional, 
an be in the eye of the beholder, and 
an be an artifa
tof method used to produ
e the solutions.We mention, however, that there is an a

epted de�nition of singular solution of an ODE. Asingular solution of an ODE is one \at every point of whi
h the uniqueness of the solution of theCau
hy problem for this equation is violated" (En
y
lopedia of Mathemati
s, online edition, Springer,http://eom.springer.de/s/s085610.htm). This de�nition provides a way to 
anoni
ally separate\ex
eptional" solutions from the rest, and some authors have used \general solution" to refer to the
olle
tion of all solutions that are not singular. This happens to reprodu
e what we have 
alled thegeneral solution in all the examples in these notes, for the simple reason that, like virtually everyDE shown students in a typi
al �rst 
ourse on ODEs nowadays, the DEs in our examples have nosingular solutions. But even for equations that do have singular solutions, it would seem preferableto use the term generi
 for the other solutions, rather than general.16For example, if R is the open disk of radius 1 
entered at (0; 0), and we take (x0; y0) = (0:99; 0),then the open disk of radius 0.005 
entered at (x0; y0) is 
ontained in R.17The author is taking some liberties here. The usual de�nition of \region" is 
onne
ted non-emptyopen subset. The author did not want to distra
t the student with a de�nition of 
onne
ted, andfelt that the student would understand from 
ontext that when \an open set in R2" is referred toin these notes, it is understood that the set is non-empty, i.e. that it has at least one point.18Note to students: The expression is allowed to involve dydx , whi
h is why we did not say \fun
tionof x and y" here. If the expression does involve dydx , our requirement that it be de�ned for all (x; y) 229



(ii) multiplying both sides of the equation by a fun
tion of x and y that is de�nedand nonzero at every point of R.Note that subtra
tion of an expression is the same as addition of the negative ofthat expression, so subtra
tion is an operation allowed in De�nition 2.24, even thoughit is not mentioned expli
itly.Example 2.25 The di�erential equationsdydx = y(1� y) (56)and 1y(1� y) dydx = 1 (57)are algebrai
ally equivalent on the regions f(x; y) j y < 0g, f(x; y) j 0 < y < 1g,and f(x; y) j y > 1g. However, they are not algebrai
ally equivalent on the whole xyplane.Example 2.26 The di�erential equations(y � x)dydx = 2y + 4x (58)and dydx = 2y + 4xy � x (59)are algebrai
ally equivalent on the regions f(x; y) j y > xg and f(x; y) j y < xg, butnot on the whole xy plane.Why this terminology? Mathemati
ians 
all two equations (of any type, not justdi�erential equations) equivalent if they have the same set of solutions. For example,the equation 2x + 3 = 11 is equivalent to the equation 3x = 12. A general strategyfor solving equations is to perform a sequen
e of operations, ea
h of whi
h takes usfrom an equation to an equivalent but simpler equation (or to an equivalent set ofsimpler equations, su
h as when we pass from \(x� 1)(x� 2) = 0" to \x� 1 = 0 orx� 2 = 0").R means that it is de�ned whenever (x; y) 2 R and any real number whatsoever is substituted fordydx .Note to instru
tors: The latter requirement is more restri
tive than ne
essary|for example, iteliminates adding to both sides 1dy=dx ,q1� ( dydx)2, or an expression likeq dydx + x+ y that it is hardto imagine ever arising in any DE that anyone would ever have an interest in solving30



But often, when we manipulate equations in an attempt to �nd their solutionsets, we perform a manipulation that 
hanges the solution set.19 This happens, forexample, if we start with the equation x3 � 3x2 = �2x and divide by x, obtainingx2 � 3x2 = �2. In this example, we lose the solution 0. (The solution set of the �rstequation is f0; 1; 2g, while the solution set of the se
ond is just f1; 2g. For anotherexample, if start with the equation px + 4 = �3, and square both sides, we obtainx + 4 = 9, and hen
e x = 5. But 5 is not a solution of the original equation; p5 + 4is 3, not �3. Our manipulation has introdu
ed a \spurious solution", a value of xthat is a solution of the post-manipulation equation that we may think is a solutionof the original equation, when in fa
t it is not.For this reason it is ni
e to have in our toolbox a large 
lass of equation-manipulation te
hniques that are guaranteed to be \safe", i.e. not to 
hange theset of solutions. For di�erential equations, the operations allowed in the de�nition of\algebrai
 equivalen
e" above are safe. The pre
ise statement is:If two di�erential equations are algebrai
ally equivalent on a region R,then the set of solutions of the �rst equation whose graphs are 
ontainedin R, is the same as the set of solutions of the se
ond equation whosegraphs are 
ontained in R. 9>>=>>; (60)If the region R above is the whole xy plane, then the 
olle
tion of all solutionsof the �rst equation|hen
e its general solution|is the same as the general solutionof the se
ond equation. In this 
ase, if R = R2 is understood, we may restate(60) more brie
y as \Algebrai
ally equivalent DEs have the same general solution,"\Algebrai
ally equivalent DEs have the same set of solutions,", or \Algebrai
allyequivalent DEs are equivalent." But on regions that are not all of R2, the brieferwording must be interpreted more 
arefully to mean statement (60).When we perform a sequen
e of algebrai
 operations in an attempt to solve adi�erential equation, espe
ially a nonlinear one, we are rarely lu
ky enough to end upwith a DE that is algebrai
ally equivalent to the original one on the whole xy plane.But usually, we maintain algebrai
 equivalen
e on regions that �ll out most of the xyplane, as in Examples 2.25 and 2.26 above.To see why statement (60) is true, let us 
he
k that operation (ii) in De�nition2.24 does not 
hange the set of solutions whose graphs lie in R. Let us suppose westart with a (�rst-order) derivative-form DE of the most general possible form:F1(x; y; dydx) = F2(x; y; dydx): (61)(Of 
ourse, by subtra
ting F2(x; y; dydx) from both sides, we 
an put this in the simplerform F(x; y; dydx) = 0, but sin
e we often perform manipulations on equations without19Usually this is due to 
arelessness, but there are other times when we do not have mu
h 
hoi
e.In those 
ases, we try to keep tra
k separately of any solutions we may have lost or spuriously gainedin this step. 31



�rst putting them in the simple form (1), we will illustrate the solution-set-doesn't-
hange prin
iple for DEs that have not been put in that form.) The equation obtainedby multiplying both sides of (61) by a fun
tion h that is de�ned at every point of Rand is nonzero on R ish(x; y)F1(x; y; dydx) = h(x; y)F2(x; y; dydx): (62)Suppose that � is a solution of (61). Then for all x in the domain of �,F1(x; �(x); �0(x)) = F2(x; �(x); �0(x)): (63)If the graph of � lies in R 20, then for all x in the domain of �, the point (x; �(x))lies in R, hen
e in the domain of h. Therefore for all x in the domain of �, h(x; �(x))is some number, and equality is maintained if we multiply both sides of (63) by thisnumber. Thereforeh(x; �(x))F1(x; �(x); �0(x)) = h(x; �(x))F2(x; �(x); �0(x)) (64)for all x in the domain of �. Hen
e � is a solution of (62). Thus every solution of(61) whose graph lies in R is also a solution of (62) whose graph lies in R.Conversely, suppose that � is a solution of (62) whose graph lies in R. Then (64)is satis�ed for all x in the domain of �. By hypothesis, h(x; y) 6= 0 for every point(x; y) 2 R, so for ea
h x in the domain of �, 1h(x;�(x)) is some number, and equalityis maintained if we multiply both sides of (64) by this number. Therefore (63) issatis�ed for all x in the domain of �, so � is a solution of (61). Thus every solutionof (62) whose graph lies in R is also a solution of (61) whose graph lies in R.This 
ompletes the argument that multiplying by h has not 
hanged the set ofsolutions whose graphs lie in R. The argument that operation (i) in De�nition 2.24does not 
hange this set of solutions is similar, and is left to the student.We mention that it is possible for two di�erential equations to be equivalentwithout being algebrai
ally equivalent. Performing operations other than those inDe�nition 2.24 does not always 
hange the set of solutions. But be
ause they might
hange the set of solutions, any time we perform one of these \unsafe" operations wemust 
he
k, by some other method, that we properly a

ount for any lost solutionsor spurious solutions.20In this argument we are talking about all solutions whose graphs lie in R, not just maximalsolutions whose graphs lie in R. (Students who did not read or did not understand the earliermaterial on maximal solutions should ignore the part of the previous senten
e after the 
omma.) Ifthere is a solution ~� whose graph lies partly inside R and partly outside R, then there are x-intervalsI to whi
h we 
an restri
t ~� and obtain a solution whose graph lies in R. All solutions obtained thisway are 
overed by our argument, as well as any maximal solutions whose graphs lie in R. (Studentswho did not read or did not understand the material on maximal solutions should repla
e the se
ondhalf of the previous senten
e with \as well as any solutions whose graphs lay entirely inside R tobegin with".) 32



Students should already be familiar with this fa
t from their experien
e with sep-arable equations. For example, in passing from equation (56) to (57), we potentiallylose any solution whose graph interse
ts the horizontal line fy = 0g or the horizontalline fy = 1g. Are there any su
h solutions? Yes: the two 
onstant solutions y � 0and y � 1, whose graphs happen to be exa
tly these two horizontal lines.When we are dealing with separable equations dydx = g(x)p(y), and there is anynumber y0 for whi
h p(y0) = 0, when we separate variables we don't just potentiallylose solutions, we always lose solutions (unless we make an error later in the pro
ess).For every number y0 for whi
h p(y0) = 0, the 
onstant fun
tion y = y0 is a solutionthat separation of variables, 
arried out with no errors, 
annot �nd. But fortunately,it �nds all the others (in impli
it form).We 
an see why in the 
ontext of Example 2.25. The right-hand side of (56) isa fun
tion of y whose partial derivative with respe
t to y is 
ontinuous everywhere.Therefore for every initial-
ondition point (x0; y0) in the xy plane, the fundamentalExisten
e and Uniqueness Theorem for initial-value problems applies, and so throughea
h su
h point there is the graph of one and only one maximal solution. If therewere a non-
onstant solution of (56) whose graph interse
ted the graph of the 
onstantsolution y � 1 (the line fy = 1g), say at the point (x0; 1), we would have a 
ontra-di
tion to uniqueness of the solution of the IVP with di�erential equation (56) andwith initial 
ondition y(x0) = 1. Similarly, no non-
onstant solution of (56) 
an havea graph that interse
ts the graph of the 
onstant solution y � 0 (the line fy = 0g).Therefore the graph of every non-
onstant solution lies entirely in one of the threeregions mentioned in Example 2.25. Sin
e equations (56) and (57) are algebrai
allyequivalent on ea
h of these three regions, the general solution of (57) is pre
isely theset of all solutions of (56) other than the two 
onstant solutions that we have alreadya

ounted for.Thus, if we manage to solve (57)|whi
h we leave the student to do|and thenadd to its general solution the two 
onstant fun
tions y � 0 and y � 1, we obtain allsolutions of (56).Let us now look at the algebrai
-equivalen
e 
on
ept for some linear DEs.Example 2.27 The equations dydx + 3y = sinx (65)and e3x dydx + 3e3xy = e3x sinx (66)are algebrai
ally equivalent on the whole xy plane. The se
ond equation 
an beobtained from the �rst by multiplying by e3x, whi
h is nowhere zero. Similarly, the�rst equation 
an be obtained from the se
ond by multiplying by e�3x, whi
h is33



nowhere zero.The student familiar with integrating-fa
tors will re
ognize that the e3x in theexample above is an integrating fa
tor for the �rst equation. To solve linear DEsby the integrating-fa
tor method, the only fun
tions we ever need to multiply by arefun
tions of x alone. Of 
ourse, every su
h fun
tion 
an be viewed as a fun
tion ofx and y that simply happens not to depend on y. More expli
itly, given a fun
tionone-variable fun
tion �, we 
an de�ne a two-variable fun
tion ~� by ~�(x; y) = �(x).If �(x) is nonzero for every x in an interval I, then ~�(x; y) is nonzero at every (x; y)in the region I �R (an verti
al strip, in�nite in the �y-dire
tions). So we will add abit to De�nition 2.24 to have language better suited to linear equations:De�nition 2.28 We say that two linear di�erential equations, with independentvariable x and dependent variable y, are algebrai
ally equivalent on an interval I ifthey are algebrai
ally equivalent on the region I�R. This happens if and only if oneequation 
an be obtained from the other by the operations of (i) adding to both sidesof the equation a fun
tion of x that is de�ned at every point of the region I �R, ory times su
h fun
tion of x, or dydx times su
h a fun
tion of x; and/or (ii) multiplyingboth sides of the equation by a fun
tion of x that is de�ned and nonzero at everypoint of the interval I.Example 2.29 The equations xdydx � 2y = 0 (67)and x3 dydx � 2x2y = 0 (68)are algebrai
ally equivalent on the interval (0;1), and also on the interval (�1; 0),but not on (�1;1) or on any other interval that in
ludes 0. (Thus, in a

ordan
ewith De�nition 2.24, we do not simply 
all them \algebrai
ally equivalent".) The se
-ond 
an be obtained from the �rst by multiplying by x2, whi
h satis�es the \nowherezero" 
riterion on any interval not 
ontaining 0, but violates it on any interval thatin
ludes 0.The �rst equation 
an be obtained from the se
ond by multiplying by x�2, whi
his not zero anywhere, but does not yield a fun
tion of x on any interval that 
ontains0.Example 2.30 The equations 34



xdydx � 2y = 0 (69)(the same equation as (67) and x�2 dydx � 2x�3y = 0 (70)are algebrai
ally equivalent on the interval (0;1), and also on the interval (�1; 0),but not on (�1;1) or on any other interval that in
ludes 0. In fa
t, the se
ondequation does not even make sense on any interval that in
ludes 0. The se
ondequation 
an be obtained from the �rst by multiplying by x�3, whi
h is not zeroanywhere, but is not de�ned at x = 0, hen
e does yield a fun
tion that we 
anmultiply by on any interval that in
ludes 0.The �rst equation 
an be obtained from the se
ond by multiplying by x3, whi
his de�ned for all x, but violates the \nowhere zero" 
ondition on any interval that
ontains 0.In the 
ontext of linear DEs, equation (60) redu
es to the following simplerstatement: Two linear DEs that are algebrai
ally equivalenton an interval I have exa
tly the same solutions on I. � (71)Two linear DEs that are not algebrai
ally equivalent on an interval I may or maynot have the same set of solutions on I. When we manipulate a linear DE in su
h away that we \turn it into" an algebrai
ally inequivalent DE, we run the risk that wewill not �nd the true set of solutions. The next example illustrates this trap.Example 2.31 Find the general solution ofxdydx � 2y = 0 (72)(the same equation as (69) and (67)).Sin
e this is a linear equation, our �rst step is to \put it in standard linear form"by dividing through by x. This yields the equationdydx � 2x y = 0: (73)However, (72) and (73) are not algebrai
ally equivalent on the whole real line, butonly on (�1; 0) and (0;1). Equation (73) does not even make sense at x = 0, while
35



(72) makes perfe
tly good sense there.21As the student may verify, equation (73) has an integrating fa
tor �(x) = x�2.Putting our brains on auto-pilot, we multiply through by x�2, and write(x�2y)0 = 0;) Z (x�2y)0dx = Z 0 dx;) x�2y = C;) y = Cx2: (74)(Even worse than putting our brains on auto-pilot is to ignore warnings to learnthe integrating-fa
tor method rather than to memorize a formula it leads to for thegeneral solution of a �rst-order linear DE in \most" 
ir
umstan
es. That formula hasits limitations and will also lead, in
orre
tly, to (74).)Neither in the original DE (72) nor in (74) do we see any of the 
lues we areused to seeing, su
h as a \ 1x", that warn us that there may be a problem with (74)at x = 0. (There were 
lues in the intermediate steps, in whi
h negative powers ofx appeared, but we ignored them.) The fun
tions given by (74) form a 1-parameterfamily of fun
tions de�ned on the whole real line, and it is easy to 
he
k that allof them are solutions of (72). We have been taught that the general solution of a�rst-order linear DE is a 1-parameter family of solutions|under 
ertain hypotheses.(We have ignored the fa
t that those hypotheses were not met, however.) Havingfound what we expe
ted to �nd, we write \y = Cx2" as our �nal, but wrong, answer.Let us go ba
k to square one and 
orre
t our work. The transition from equa-tion (72) to (73) involves dividing by x, and therefore is not valid on any intervalthat 
ontains 0. These two equations are algebrai
ally equivalent on (0;1) and on(�1; 0), and therefore have the same solutions on these intervals. But the generalsolution to (72) might in
lude solutions on intervals that 
ontain 0, while the generalsolution to (73) 
annot.We 
an still use the basi
 pro
edure that led us to (74); we just have to be more
areful with it. Auto-pilot will not work.Be
ause (73) makes no sense at x = 0, we must solve it separately on (�1; 0)and (0;1). We 
an do the work for both of these intervals simultaneously, as longas we keep tra
k of the fa
t that that's what we're doing.So suppose � is a di�erentiable fun
tion on either on I = (0;1) or on I =(�1; 0), and let y = �(x). On I, x�2 is an integrating fa
tor. Multiplying both21Standard terminology related to this problem is singular point. Generally speaking, a �rst-order linear DE does not \behaves well" on an interval I if, when put in standard linear formdydx + p(x)y = g(x), there is a point x0 2 I for whi
h limx!x0+ p(x) = �1 or limx!x0� p(x) = �1.Su
h points x0 are 
alled singular points of the linear DE. The point x = 0 is a singular point ofboth (72) and (73). 36



sides of our equation on I by x�2, we �nd that � is a solution of (73) if and onlyif (x�2y)0 = 0. Be
ause I is an interval, (x�2y)0 = 0 if and only if x�2y is 
onstant.Therefore:� � is a solution of (73) on (0;1) if and only if there is a 
onstant C for whi
hx�2�(x) � C; equivalently, for whi
h � is given by�(x) = Cx2: (75)� Exa
tly the same 
on
lusion holds on the interval (�1; 0).Thus the general solution of (73) on (0;1) isy = Cx2; x > 0; (76)while the general solution of (73) on (�1; 0) isy = Cx2; x < 0: (77)Now return to the equation we originally were asked to solve, (72), and supposethat � is a solution of this equation on (�1;1). (The argument we are about togive would work on any interval 
ontaining 0.) Let �1 be the restri
tion of � to theinterval (0;1), and let �2 be the restri
tion of � to the interval (�1; 0). Sin
e (72)and (73) are algebrai
ally equivalent on (0;1), �1 must be one of the solutions givenby (76). Thus there is some 
onstant C1 for whi
h �1(x) = C1x2. Similarly, �2 mustbe one of the solutions given by (77), so �2(x) = C2x2.Therefore �(x) = C1x2 for x > 0, and �(x) = C2x2 for x < 0. But we assumedthat � was a solution on (�1;1), so it also has a value at 0. We 
an dedu
e thisvalue by using the fa
t that the every solution of an ODE is 
ontinuous on its domain(sin
e, by de�nition, solutions are di�erentiable fun
tions, and di�erentiable fun
tionsare 
ontinuous). Therefore �(0) = limx!0 �(x). Whether we approa
h 0 from the left(using �(x) = C2x2) or the right (using �(x) = C1x2), we get the same limit, namely0. Hen
e �(0) = 0.22 Sin
e 0 also happens to be the value of C1x2 at x = 0 (as well asthe value of C2x2 at x = 0), we 
an write down a formula for � in several equivalentways, one of whi
h is �(x) = � C1x2 if x � 0;C2x2 if x < 0; (78)22Another way to �nd the value of �(0) in this example is as follows. Sin
e � is di�erentiable onits domain, the whole real line, �0(0) is some real number. Whatever this value is, when we plugx = 0 and y = �(x) into (72), the term \x dydx" be
omes 0��0(0), whi
h is 0. Hen
e �(0) = y(0) = 0.While this se
ond method works for (72), it does not work for (68)|whi
h the student will laterbe asked to solve|but the �rst method we presented does.37



(We 
ould have 
hosen to absorb the \x = 0" 
ase into the se
ond line instead of the�rst, or to use both \� 0" in the top line and \� 0" in the bottom line, sin
e thatwould not lead to any in
onsisten
y. Or we 
ould have 
hosen to write a three-lineformula, with one line for x > 0, one line for x = 0, and one line for x < 0. All ofthese ways are equally valid; we just 
hose one of them.)Conversely, as the student may 
he
k, every fun
tion of the form (78) is a solutionof (72). Therefore the general solution of (72) on (�1;1) is the two-parameter familyof fun
tions given by (78), with C1 and C2 arbitrary 
onstants23. This 
olle
tion ofsolutions 
ontains all the solutions on every other interval, in the sense that thegeneral solution on any interval I is obtained by restri
ting the fun
tions (78) tothe interval I. (For the student who read and understood the material on maximalsolutions: the two-parameter family (78) is the general solution of (72) as de�ned inDe�nition 2.18.)We do not want the student to 
ome away from the previous example with thewrong impression. For the vast majority, if not 100%, of nth-order linear DEs youare likely to en
ounter in your �rst 
ourse on DEs, you will be shown how to solvethem (or asked to solve them) only on intervals for whi
h the general solution is ann-parameter family of fun
tions. You are unlikely to see a two-parameter family offun
tions as the general solution unless the equation is se
ond-order. Example 2.31is the ex
eption, not the rule. But we wanted the student to see another example ofthe perils of what 
an happen when algebrai
 equivalen
e is not maintained duringthe manipulation of equations.Algebrai
ally inequivalent linear DEs do not always have di�erent solution-sets.The student should test his/her understanding of the example above by showing thatequations (67) and (68) have the same set of solutions.2.5 First-order equations in di�erential formDe�nition 2.32 A di�erential in the variables (x; y) is an expression of the formM(x; y)dx+N(x; y)dy (79)where M and N are fun
tions de�ned on some region in R2. We often abbreviatethis by writing (79) as just Mdx +Ndy; (80)23We warn the student that most textbooks apply the term \general solution" to the 
olle
tion ofall solutions of a linear �rst-order DE on an interval only when that 
olle
tion is a one-parameterfamily. 38



leaving it understood that M and N are fun
tions of x and y. Also, another termwe will use for \open subset of R2 " is region24 When a region R is spe
i�ed, we 
allMdx +Ndy a di�erential on R.The fun
tions M;N in (79) and (80) are 
alled the 
oeÆ
ients of dx and dy inthese expressions.The following de�nition provides an important sour
e of examples of di�erentials.De�nition 2.33 (a) If F is a di�erentiable fun
tion on a region R, and the variableswe use for R2 are x and y, then the di�erential of F on R is the di�erential dFde�ned by dF = �F�x dx+ �F�y dy: (81)(b) A di�erential Mdx + Ndy on a region R is 
alled exa
t if there is somedi�erentiable fun
tion F on R for whi
h Mdx +Ndy = dF on R.Note that we have not yet as
ribed meaning to \dx" or \dy"; e�e
tively, theyare just pla
e-holders for the fun
tions M and N in (79) and (80). Similarly, so farthe expression \Mdx+Ndy" is just notation; its information-
ontent is just the pairof fun
tions M;N (plus the knowledge of whi
h fun
tion is the 
oeÆ
ient of dx andwhi
h is the 
oeÆ
ient of dy).You (the student) may have 
ome a
ross the noun \di�erential" in your previous
al
ulus 
ourses. The sense in whi
h we use this noun in these notes is more sophis-ti
ated than the notion you probably learned there. There is a relation between thetwo notions, but we are not ready yet to say what that relation is.If Mdx + Ndy is a di�erential on a region R, and (x0; y0) is a point in R, we
all the expression M(x0; y0)dx+N(x0; y0)dy the value of the di�erentialMdx+Ndyat (x0; y0). However, this \value" is not a real number; so far it is only a pie
e ofnotation of the form \(real number times dx) + (real number times dy)", and we stillhave atta
hed no meaning to \dx" and \dy". The value of a di�erential at a pointis a
tually a 
ertain type of ve
tor, but not the type you learned about in Cal
ulus3. (The type of ve
tor that it is will not be des
ribed in these notes; the ne
essary
on
epts require a great deal of mathemati
al sophisti
ation to appre
iate, and areusually not introdu
ed at the undergraduate level.)24The author is taking some liberties here. The usual de�nition of \region" is 
onne
ted non-emptyopen subset. The author did not want to distra
t the student with a de�nition of 
onne
ted, andfelt that the student would understand from 
ontext that when \an open set in R2" is referred toin these notes, it is understood that the set is non-empty, i.e. that it has at least one point.39



We next de�ne rules for algebrai
 operations involving di�erentials. These def-initions are ne
essary, rather than being \obvious fa
ts", be
ause so far di�erentialsare just pie
es of notation to whi
h we have atta
hed no meaning.De�nition 2.34 Let R be an open set in R2 and let M;N;M1;M2; N1; N2, and fbe fun
tions de�ned on R. (Thus Mdx +Ndy;M1dx+N1dy; and M2dx +N2dy aredi�erentials on R.) Then we make the following de�nitions:1. Equality of di�erentials: M1dx + N1dy = M2dx + N2dy on R if and only ifM1(x; y) =M2(x; y) and N1(x; y) = N2(x; y) for all (x; y) 2 R.2. Abbreviation by omitting terms with 
oeÆ
ient zero:Mdx = Mdx + 0dy;Ndy = 0dx+Ndy:3. Abbreviation by omitting the 
oeÆ
ient 1 (the 
onstant fun
tion whose 
onstantvalue is the real number 1): dx = 1dx;dy = 1dy:4. Insensitivity to whi
h term is written �rst:Ndy +Mdx =Mdx +Ndy:5. Addition of di�erentials:(M1dx+N1dy) + (M2dx+N2dy) = (M1 +M2)dx+ (N1 +N2)dy:6. Subtra
tion of di�erentials:(M1dx +N1dy)� (M2dx +N2dy) = (M1 �M2)dx + (N1 �N2)dy:7. Multipli
ation of a di�erential by a fun
tion:f(Mdx +Ndy) = fMdx+ fNdy:(Here, the left-hand side is read \f timesMdx+Ndy", not \f ofMdx+Ndy".The latter would make no sense, sin
e f is a fun
tion of two real variables, nota fun
tion of a di�erential.) 40



8. The zero di�erential on R is the di�erential 0dx+0dy, whi
h we often abbreviatejust as \0". (We tell from 
ontext whether the symbol \0" is being used todenote the real number zero, the 
onstant fun
tion whose value at every point isthe real number zero, or the zero di�erential. In the equation \0dx+ 0dy = 0",
ontext tells us that ea
h zero on the left-hand side of the equation is to beinterpreted as the 
onstant fun
tion with 
onstant value 0, while the zero on theright-hand side is to be interpreted as the zero di�erential25.Note that our de�nition of subtra
tion is the same as what we would get by
ombining the operations \addition" and \multipli
ation by the 
onstant fun
tion�1":(M1dx+N1dy)� (M2dx+N2dy) = (M1dx+N1dy) + (�1)(M2dx+N2dy):Note also that we do not de�ne the produ
t or quotient of two di�erentials. Inparti
ular we don't (yet) attempt to relate the di�erentials dx and dy to a derivativedydx . (When we do relate them later, dydx still will not be the quotient of two di�erentials.)Finally, we are ready to bring di�erential equations ba
k into the pi
ture!De�nition 2.35 A di�erential equation in di�erential form, with variables (x; y), isan equation of the formone di�erential in (x; y) = another di�erential in (x; y): (82)We write su
h an equation only when where there is some region R on whi
h bothdi�erentials are de�ned. When the region R is spe
i�ed, we append \on R" to thephrase \DE in di�erential form", or insert it after \DE".Example 2.36 Whenever we separate variables in a separable, derivative-form ODE,we go through a step in whi
h we write down a di�erential-form ODE, su
h asydy = exdx: (83)25As a general rule, it's a bad idea to use the same symbol to represent di�erent obje
ts, andit's usually a parti
ularly awful idea to let the same symbol have two di�erent meanings in thesame equation. We allow 
ertain|very few|ex
eptions to this rule, in order to avoid 
umbersomenotation, su
h as having three di�erent symbols su
h \0R", \0f
n," and \0di� ," fot the zero number,zero fun
tion, and zero di�erential respe
tively.
41



A very important di�eren
e between a DE in derivative form and a DEin di�erential form is that a DE in di�erential form has no \independentvariable" or \dependent variable". The two variables are on an equal footing.We do have a \�rst variable" and \se
ond variable" (for whi
h we are using the lettersx and y, respe
tively, in these notes), but only be
ause we need to put names to our�rst and se
ond variables in order to spe
ify the fun
tions M and N (e.g. to writea formula su
h as \M(x; y) = x2y3"). Do not make the mistake of thinking thatwhenever you see \x" and \y" in a DE, x is automati
ally the independent variableand y the dependent variable. Also, even when it's been de
ided that the letters xand y will be used, there is no law that says x has to be the �rst variable and y these
ond. In these notes we 
hoose the 
onventional order so that the student will feelon more familiar ground. But noti
e that if we were to 
hoose di�erent names for ourvariables, and for the sake of being ornery write something like� d� = eada;you would not have a 
lue as to whi
h variable to 
all the �rst|nor would it matterwhi
h 
hoi
e you made.Here is the di�erential-form analog of De�nition 2.24:De�nition 2.37 We say that two DEs in di�erential form are algebrai
ally equivalenton a region R if one 
an be obtained from the other by the operations of (i) additionof di�erentials and/or (ii) multipli
ation by a fun
tion de�ned at every point of Rand is nowhere zero on R.So, for example, ea
h of the di�erential-form ODEs2x2ydx = tan(x+ y)dy;2x2ydx� tan(x + y)dy = 0;and ex(2x2ydx� tan(x+ y)dy) = 0;is algebrai
ally equivalent to the other two on R2 (and on any region in R2). On theopen set f(x; y) j x 6= 0g these equations are also algebrai
ally equivalent tox(2x2ydx� tan(x+ y)dy) = 0; (84)but are not algebrai
ally equivalent to (84) on the whole plane R2, sin
e the plane
ontains points at whi
h x = 0. 42



Note that by subtra
ting the di�erential on the right-hand side of (82) from bothsides of the equation, we obtain an algebrai
ally equivalent equation of the formMdx +Ndy = 0:Later, after we have de�ned \solution of a DE in di�erential form", we will see thatalgebrai
ally equivalent equations have the same solutions. Therefore we lose nogenerality, in our dis
ussion of solutions of DEs in di�erential form, if we restri
tattention to equations of the form (86). (However, there is one instan
e in whi
h it is
onvenient to 
onsider di�erential-form DEs that have a nonzero term on ea
h side:the 
ase of separated variables, of whi
h (83) is an example.)In our dis
ussion of derivative-form DEs, we frequently mentioned the graph ofa solution. The graph is an important 
urve. Its analog for di�erential-form DEs iswhat we 
all solution 
urve, and it is even more important for di�erential-form DEsthan it is for derivative-form DEs. Below, we will de�ne solution 
urve and solutionfor di�erential-form DEs. In reading this material the student should pay 
arefulattention to whether or not the word \
urve" appears after \solution", sin
e solution
urve and solution are very di�erent gadgets, although they are related.2.5.1 Solution 
urves of equations in di�erential formIn Cal
ulus 2 and 3 you learned about parametrized 
urves (not ne
essarily by thatname, however). We review the 
on
ept and some familiar terminology, and introdu
ewhat may be some unfamiliar terminology.De�nition 2.38 A parametrized 
urve in R2 is an ordered pair of 
ontinuous real-valued fun
tions (f; g) de�ned on an interval (the parameter interval) I. The setf(f(t); g(t)) j t 2 Ig (85)is 
alled the range, tra
e, or image of the parametrized 
urve.A 
urve in R2 is a point-set C � R2 that is the range of some parametrized
urve26.Given a 
urve C, if (f; g) is a parametrized 
urve with tra
e C, then we say that(f; g) is a parametrization of C or that (f; g) parametrizes C.In other words, a 
urve C is a point-set that is \tra
ed out" by the parametri
equations x = f(t);y = g(t);26The \C" used in these notes for a 
urve is in a di�erent font from the C that we use for a
onstant. 43



as t ranges over a parameter-interval; hen
e the terminology \tra
e"27. is familiarwith it from pre
al
ulus and Cal
ulus 1. The 
on
ept is the same here: the rangeof (f; g), thought of as a single R2-valued fun
tion 
 (de�ned by 
(t) = (f(t); g(t)))rather than as a pair of R-valued fun
tions. The word image is often preferred bymathemati
ians, but it means the same thing as \range".Note that we are now using the letter I for a parameter-interval (\t-interval"),not an x-interval.Most of the time it is simpler to write \(x(t); y(t))" than to introdu
e the extraletters f; g and write \(f(t); g(t))" for the point in the xy plane de�ned by \x =f(t); y = g(t)". We will often use the simpler notation (x(t); y(t)) when there is nodanger of misinterpretation. Thus we we also sometimes write \
(t) = (x(t); y(t))".Note that in De�nition 2.38, we do not require the interval I to be open. This isso that we 
an present 
ertain examples below simply, without bringing in too many
on
epts at on
e that may be new to the student. Eventually, we will want to 
onsideronly parametrized 
urves that have an open domain-interval, but we will not imposethat requirement just yet.Example 2.39 Let x(t) = 2 
os t; y(t) = 2 sin t; t 2 [0; 2�℄. Then for all t we havex(t)2+y(t)2 = 4, so the range of this parametrized 
urve lies along the 
ir
le x2+y2 =4. It is not hard to see that every point on the 
ir
le is in the range of this parametrized
urve, so the (just-plain, or unparametrized) 
urve asso
iated with this parametrized
urve is the whole 
ir
le x2 + y2 = 4. Had we used the same formulas for x(t) andy(t), but restri
ted t to the interval [0; �℄, the range would still have lain along the
ir
le x2 + y2 = 4, but would have been only a semi
ir
le. Had we used the sameformulas, but used a slightly larger, open interval, say (�0:1; 2�+0:1), then we wouldhave obtained the whole 
ir
le again, with some small ar
s tra
ed-out twi
e.Every 
urve has in�nitely many parametrizations. For example, \x(t) = 2 
os 7t;y(t) = 2 sin 7t; t 2 [0; 2�=7℄" tra
es out the same 
urve as in �rst part of the exampleabove. So does \x(t) = 2 
os t3; y(t) = 2 sin t3; t 2 [��1=3; �1=3℄".De�nition 2.40 A parametrization (x(t); y(t)); t 2 I is 
alled� di�erentiable if the derivatives x0(t), y0(t) exist28 for all t 2 I;27The word \tra
e" has several di�erent meanings in mathemati
s, ea
h of them 
ompletely un-related to the others. The author is using the word relu
tantly in these footnote not yet written28When I 
ontains an endpoint (i.e. I is of the form [a; b), [a; b℄, or (a; b℄, the �rst two of whi
h
ontain their left endpoints and the last two of whi
h 
ontain their right endpoints), then derivative atan endpoint that I 
ontains is interpreted as the appropriate one-sided derivative. Thus, if I 
ontainsa left endpoint a, then what we mean by \x0(a)", or \dxdt at a", is limt!a+ x(t)�x(a)t�a . Similarly if I
ontains a right endpoint b, then what we mean by \x0(b)", or \dxdt at b", is limt!b� x(t)�x(b)t�b .44



� 
ontinuously di�erentiable if it is di�erentiable and x0(t), y0(t) are 
ontinuous int; and� non-stop if it is di�erentiable and x0(t) and y0(t) are never simultaneously zero(i.e. there is no t0 for whi
h x0(t0) = 0 = y0(t0)).
De�nition 2.41 A 
urve C in R2 is smooth if for every point (x0; y0) on the 
urve,there is a number �0 > 0 su
h that for all positive � < �0, the portion of C lyinginside the open square of side-length � 
entered at (x0; y0) admits a 
ontinuouslydi�erentiable, nonstop parametrization, with domain an open interval.\Admits", as used in De�nition 2.41, is essentially another word for \has". Weuse the word \admits" be
ause \has" might mislead the student into thinking thatthe 
urve has already been dropped on his/her plate with a regular parametrization;\admits a regular parametrization" does not lend itself to this misinterpretation.The open-interval requirement at the end of De�nition 2.41 implies that if a 
urve
ontains an endpoint, then the 
urve does not meet our de�nition of \smooth 
urve".This is ne
essary in order to make various other de�nitions and theorems reasonablyshort; 
urves with endpoints are messier to handle.The student should 
onvin
e him/herself that a 
ir
le meets our de�nition of\smooth 
urve".Observe that De�nition (2.41) uses a \windowing" idea similar to the one thatwe used to talk about impli
itly-de�ned fun
tions in Se
tion 2.2. We will later give anequivalent de�nition of \smooth 
urve" that is even more reminis
ent of that earlierdis
ussion.Every 
urve admits parametrizations that are not 
ontinuously di�erentiableand/or are not non-stop. Every smooth 
urve admits 
ontinuously di�erentiableparametrizations that do not meet the \non-stop" 
riterion, as well as those thatdo meet this 
riterion. But 
urves with 
orners, su
h as the graph of y = jxj, admitno 
ontinuously di�erentiable, nonstop parametrizations. We 
an parametrize thegraph of y = jxj 
ontinuously di�erentiably|for example, by 
(t) = (t3; jtj3), withparameter-interval (�1;1)|but observe that for this parametrization, x0(0) = 0 =y0(0), so the parametrization is not non-stop. The 
orner for
es us to stop in orderto instantaneously 
hange dire
tion.The graph of y = jxj is one example of a non-smooth 
urve. Other examples ofnon-smooth 
urves are:� The letter X. You 
an draw this without your pen
il leaving the paper, so itsatis�es the de�nition of \
urve" (you are parametrizing it using time as the45



parameter), but you'll �nd that you need to violate the \non-stop" 
riterion inorder to do so.� A �gure-8. The whole 
urve does admit a 
ontinuously di�erentiable, non-stopparametrization, but the point (x0; y0) at whi
h the 
urve 
rosses itself 
ausesthe de�nition of \smooth" not to be met. For small �, the portion of the 
urvethat lies in the disk of radius � 
entered at (x0; y0) is essentially an X, and hasthe same problem that the X did.Warning about terminology. Many 
al
ulus textbooks refer to a 
ontinouslydi�erentiable, non-stop parametrization as a smooth parametrization. This usage of\smooth" is unfortunate. It 
on
i
ts with the modern meaning of \smooth fun
-tion" in advan
ed mathemati
s29. A preferable one-word term is \regular", and theonly reason we are not using it in these notes is that the meaning of \regular" isnot self-evident; we did not want to present the student with extra terminology toremember. \Regular" is 
exible term that mathemati
ians use with a 
ontextuallyvarying meaning, whi
h usually is \having the most 
ommon features" or \havingno nasty or in
onvenient features" (where the 
ontext determines what features areimportant). The meaning of non-stop is self-evident (regarding 
0(t) = (x0(t); y0(t))as the velo
ity ve
tor v(t) at time t asso
iated with the parametrization, \non-stop"is the 
ondition that the velo
ity ve
tor is not the zero ve
tor for any t), but theauthor of these notes has never seen it in any textbook30.Now we get to the heart of the matter: unlike a DE in derivative form, a DE indi�erential form is not an equation that is looking for a fun
tion. It is an equationthat is looking for a 
urve:De�nition 2.42 A solution 
urve of a di�erential equationM(x; y)dx+N(x; y)dy = 0 (86)29Note to instru
tors: in di�erential topology and di�erential geometry, \smooth parametrization"simply means \Ck map" (from an open interval to R2, in the setting of these notes) for some pre-spe
i�ed k, usually 1 or1. There is no requirement that the parametrization be non-stop to be 
alledsmooth. Even 
onstant maps, whose images are a single point, are 
onsidered smooth parametrized
urves|and it is indispensable to the de�nition of \tangent spa
e" to in
lude these when one talksabout the 
olle
tion of all smooth parametrized 
urves passing through a given point.30Note to instru
tors: in di�erential topology and geometry, what we are 
alling here a (
on-tinuously di�erentiable) non-stop parametrization is 
alled an immersion, so one would never see\non-stop" in a resear
h paper. Introdu
tory 
ourses and textbooks would be the only pla
es touse this term. When tea
hing about 
urves in Cal
ulus 3, the author of these notes uses \non-stop"as a separate 
ondition, rather than part of the de�nition of\smooth parametrization", be
ause(i) it is pedagogi
ally useful, (ii) it is more self-explanatory than the 
al
ulus-textbook de�nitionof \smooth parametrization", whi
h has the awkward feature that (with this bad de�nition) allsmooth 
urves admit non-smooth parametrizations, (iii) the 
al
ulus-textbook de�nition of \smoothparametrization" 
on
i
ts with the de�nition used by mathemati
ians who spe
ialize in studyingsmooth topologi
al or geometri
 obje
ts, and (iv) the term \non-stop" presents no su
h 
on
i
t.46



on a region R is a smooth 
urve C, 
ontained in R, for whi
h some 
ontinuouslydi�erentiable, non-stop parametrization 
(t) = (x(t); y(t)) of C satis�esM(x(t); y(t))dxdt +N(x(t); y(t))dydt = 0 (87)for all t in the domain-interval I of the parametrization. In this 
ontext, we 
all 
 aparametrized solution of (86).31When no region R is spe
i�ed, it is understood that the region of interest isthe interior of the 
ommon implied domain of M and N . Here, \
ommon implieddomain" means the set of points at whi
h both M and N are de�ned, and \interior"means that we don't 
ount points that are on the boundary of the 
ommon domain32.For reasons too te
hni
al to dis
uss here, we will not de�ne \maximal solution
urve" for a general di�erential-form DE. In a later se
tion, we will de�ne this termunder hypotheses that remove the te
hni
al diÆ
ulties.As we noted previously, in a di�erential-form DE (86) there is neither an inde-pendent nor a dependent variable; x and y are treated symmetri
ally. This symmetryis preserved in (87), but in a surprising way: in (87), both x and y are dependentvariables! The independent variable is t|a variable that is not even visible in (86).Algebrai
 equivalen
e (see De�nition 2.37) has the same importan
e for DEs indi�erential form that it has for DEs in derivative form. Suppose that two equationsM1dx+N1dy = 0 and M2dx+N2dy = 0 are algebrai
ally equivalent on a region R .Then there is a fun
tion f on R, nonzero at every point of R, su
h that M2 = fM1and N2 = fN1. If C is a solution 
urve of M1dx+N1dy = 0 and (x(t); y(t)), t 2 I, isa 
ontinuously di�erentiable, non-stop parametrization of C, thenM2(x(t); y(t))dxdt +N2(x(t); y(t))dydt= f(x(t); y(t))�M1(x(t); y(t))dxdt +N1(x(t); y(t))dydt�= f(x(t); y(t))� 0= 0:Thus C is a solution 
urve of M2dx + N2dy = 0, and (x(t); y(t)) is a parametrizedsolution of this DE. Hen
e every solution 
urve of M1dx + N1dy = 0 is a solution
urve of M2dx+N2dy = 0, and the same goes for parametrized solutions.31The terminology \solution 
urve" and \parametrized solution" were invented for these notes;they are not standard.32Note to instru
tor: The author has avoided giving a 
areful de�nition of \boundary" here, andtherefore of \interior", to avoid distra
ting the student.47



Similarly, sin
e f is nowhere zero on R, we have M1 = 1fM2 and N1 = 1fN2.The same argument as above, with the subs
ripts \1" and \2" inter
hanged andwith f repla
ed by 1f , shows that every solution 
urve or parametrized solution ofM2dx +N2dy = 0 is a solution 
urve or parametrized solution of M1dx +N1dy = 0.Thus:Two algebrai
ally equivalent DEs in di�erential form have exa
tly thesame solution 
urves, and exa
tly the same parametrized solutions.Observe that ifM2 = fM1 and N2 = fN1, but f is allowed to be zero somewhereon R, then every solution 
urve (or parametrized solution) of M1dx + N1dy = 0 isa solution 
urve (or parametrized solution) of M2dx + N2dy = 0, but the reversemay not be true. (A similar statement holds for equations in derivative form.) Thus,just as for derivative form, when we algebrai
ally manipulate di�erential-form DEs,if we multiply or divide by fun
tions that 
an be zero somewhere, we 
an gain orlose solutions, and therefore wind up with a set of solutions that is not the set of allsolutions of the DE we started with.De�nition 2.42 implies more about solution 
urves and parametrized solutionsthan is obvious just from reading the de�nition.To start with, equation (87) has a geometri
 interpretation. Let (x(t); y(t)) bea 
ontinuously di�erentiable, non-stop parametrization of some solution 
urve C ofMdx + Ndy = 0. Let v(t) = 
0(t) = x0(t)i + y0(t)j, where i and j are the standardbasis ve
tors in the xy plane. Then v(t), the velo
ity-ve
tor fun
tion asso
iated withthe parametrization, is tangent to the smooth 
urve C at the point (x(t); y(t)). We
an rewrite equation (87) using the dot-produ
t you learned in Cal
ulus 3:(M(x(t); y(t))i+N(x(t); y(t))j) � v(t) = 0: (88)This says that, for ea
h t, the ve
tor v(t) is perpendi
ular to the ve
torM(x(t); y(t))i+N(x(t); y(t))j. Thus for ea
h point (x0; y0) on C, the velo
ity ve
tor at that point (i.e.v(t0), where (x(t0); y(t0)) = (x0; y0)) is perpendi
ular to M(x0; y0)i+N(x0; y0)j.Suppose we have another regular parametrization of the same 
urve C. Tospeak 
learly of both parametrizations, we must temporarily abandon the notation\(x(t); y(t))" in favor of (f1(t); g1(t)) (t 2 I1) and (f2(t); g2(t)) (t 2 I2). At a givenpoint (x0; y0), the velo
ity ve
tors v1;v2 
oming from the two parametrizations willbe parallel, both being nonzero ve
tors tangent to C at that point. (I.e. if t1; t2 aresu
h that (f1(t1); g1(t1)) = (x0; y0) = (f2(t2); g2(t2)), then v2(t2) = 
v1(t1) for somenonzero s
alar 
.) But then(M(x0; y0)i+N(x0; y0)j) � v2(t2) = (M(x0; y0)i+N(x0; y0)j) � 
v1(t1)= 
 (M(x0; y0)i+N(x0; y0)j) � v1(t1)= 
 0= 0:48



Sin
e this holds for all points (x0; y0) on C, it follows that the parametrizationx = f2(t); y = g2(t) also satis�es (87).33 Thus if one 
ontinuously di�erentiable,non-stop parametrization of C satis�es (87), so does every other 
ontinuously dif-ferentiable, non-stop parametrization of C. Therefore, even though De�nition 2.42requires only that there be some 
ontinuously di�erentiable, non-stop parametriza-tion of C satisfying (87), on
e we know that even one 
ontinuously di�erentiable,non-stop parametrization of C has this property, they all do. Said another way:Every 
ontinuously di�erentiable, non-stop parametrization of asolution 
urve of a di�erential equation Mdx +Ndy = 0 is aparametrized solution of this equation: 9=; (89)This gets ba
k to the statement we made just prior to De�nition 2.42: that a DEin di�erential form is looking for a 
urve. We did not say \parametrized 
urve". A
urve is a geometri
 obje
t, a 
ertain type of point-set in the plane. The 
on
ept ofparametrized 
urve is needed to de�ne whi
h point-sets are 
urves and whi
h aren't.It's also needed to de�ne many other features or properties of a 
urve, su
h as whethera 
urve is a solution 
urve of a (given) DE in di�erential form. Any property thatis de�ned via parametrizations (su
h as being a solution 
urve of a DE in di�eren-tial form) 
an potentially hold true for one parametrization but not for another. Aproperty de�ned in terms of parametrizations is intrinsi
 to a (smooth) 
urve|thepoint-set tra
ed out by any parametrization|if and only if the property holds truefor all 
ontinuously di�erentiable, non-stop parametrizations of that 
urve. These arethe properties that are truly geometri
. What statement (89) is saying is that theproperty \I am a solution 
urve of this di�erential-form DE" is an intrinsi
, geometri
property.Although the 
on
epts of \solution of a DE in derivative form" and \solution
urve of a DE in di�erential form" are fundamentally di�erent|the former is a fun
-tion (of one variable); the latter is a geometri
 obje
t, a smooth 
urve|they are stillrelated to ea
h other. We will see pre
isely what the relation is in a later se
tionof these notes. For now, we mention just that the graph of any solution of a DE inderivative form is a solution 
urve for some DE in di�erential form. The 
onverseis not true, be
ause not every smooth 
urve in R2 is the graph of a fun
tion of onevariable (
onsider the 
ir
le).Many smooth 
urves in R2 that are not graphs of one-variable fun
tions 
anstill be expressed entirely or \mostly" as a union of graphs of equations of the form\y = di�erentiable fun
tion of x." But for many smooth 
urves, in
luding thosethat arise as solution 
urves of di�erential equations in di�erential form, this is often33This 
an also be shown using the Inverse Fun
tion Theorem that you may have learned inCal
ulus 1, plus the Chain Rule. 49



neither ne
essary nor desirable34. This is another fundamental di�eren
e betweenderivative-form DEs and di�erential-form DEs.Example 2.43 Consider the equationxdx + ydy = 0: (90)Suppose we are interested in a solution 
urve of this DE that passes through the point(0; 5). As the student may 
he
k, the parametrized 
urvex(t) = 5 
os t;y(t) = 5 sin t;t 2 [0; 2�℄, is a parametrized solution. The solution 
urve it parametrizes is the 
ir
lex2 + y2 = 25, whi
h is not the graph of a fun
tion of x. The 
ir
le is a beautifulsmooth 
urve, and as far as the DE (90) is 
on
erned, there is no reason to ex
ludeany point of it.But we run into trouble if we try to express this 
urve using graphs of di�er-entiable fun
tions of x alone. The 
ir
le 
an be expressed \mostly" as the union ofthe graphs of y = p25� x2;�5 < x < 5, and y = �p25� x2;�5 < x < 5. (Theendpoints of the x-interval [�5; 5℄ must be ex
luded sin
e ddxp25� x2 does not existat x = �5.) But we 
annot get the whole 
ir
le.2.5.2 The meaning of a di�erentialNow we are ready to as
ribe meaning to a di�erential35. However, don't worry if youdon't understand the meaning given below. Understanding it is not essential to theuse of di�erentials in di�erential equations. In fa
t, in this se
tion of the notes, thereare no di�erential equations|just di�erentials.A di�erential Mdx + Ndy is a ma
hine with an input and an output. What ittakes as input is a (di�erentiably) parametrized 
urve 
. What it then outputs is afun
tion, de�ned on the same interval I as 
. If we write 
(t) = (x(t); y(t)), then theoutput is the fun
tion whose value at t 2 I is M(x(t); y(t))dxdt +N(x(t); y(t))dydt .34We emphasize that this \neither ne
essary nor desirable" applies only to DEs that from the startare written in di�erential form, su
h as in orthogonal-traje
tories problems. When di�erential-formequations are used as a tool to solve derivative-form equations, say with dependent variable y andindependent variable x, then it usually is desirable to write solutions in the expli
it form \y =di�erentiable fun
tion of x"|and your instru
tor may regard it as ne
essary to do this whenever itis algebrai
ally possible.35Di�erentials 
an be understood at di�erent levels of loftiness. The level 
hosen for these notesis a higher level than the author has seen in Cal
ulus 1-2-3 and introdu
tory DE textbooks, but itis not the highest level. 50



We use the language \Mdx + Ndy a
ts on 
" to refer to the fa
t that thedi�erential takes 
 as an input and then \pro
esses" it to produ
e some output.Notation we will use for the output fun
tion is (Mdx + Ndy)[
℄. This is the samefun
tion that we expressed in terms of t in the previous paragraph:the fun
tion obtainedwhen the di�erentiala
ts on 
z }| {(Mdx +Ndy)[
℄ (t)| {z }value of the fun
tion(Mdx+Ndy)[
℄at t =M(x(t); y(t))dxdt +N(x(t); y(t))dydt : (91)
The notation on the left-hand side of (91) may look intimidating and unwieldy, butit (or something like it) is a ne
essary evil for this se
tion of the notes. It will not beused mu
h outside this se
tion.Let us make 
onta
t between the meaning of di�erential given above, and whatthe student may have seen about di�erentials before. The easiest link is to di�eren-tials that arise as notation in the 
ontext of line integrals in Cal
ulus 3. (Studentswho haven't 
ompleted Cal
ulus 3 should skip down to the paragraph that in
ludesequation (95), read that paragraph, and skip the rest of this se
tion.) Re
all thatone notation for the line integral of a ve
tor �eld M(x; y)i+N(x; y)j over a smooth,oriented 
urve C in the xy plane isZCM(x; y)dx+N(x; y)dy: (92)To see that the integrand in (92) is the same gadget we des
ribed above, let'sreview the rules you learned for 
omputing su
h an integral:1. Choose a 
ontinuously di�erentiable, nonstop parametrization 
 of C. Writethis as 
(t) = (x(t); y(t)), t 2 [a; b℄.36 Depending on your tea
her and textbook,you may or may not have been introdu
ed to using a single letter, su
h as 
 orr, for the parametrization. But almost 
ertainly, one ingredient of the notationyou used was \(x(t); y(t))".2. In (92), make the following substitutions: x = x(t); y = y(t); dx = dxdt dt; dy =dydt dt, and RC = R ba . The integral obtained from these substitutions is36The parametrization should also 
onsistent with the given orientation of C, and to be one-to-one, ex
ept that \
(a) = 
(b)" is allowed in order to handle 
losed 
urves. These te
hni
alities isunimportant here; the author is trying only to jog the student's memory, not to review line integralsthoroughly. 51



Z ba �M(x(t); y(t))dxdt +N(x(t); y(t))dydt� dt: (93)3. Compute the integral (93). The de�nition of (92) is the value of (93):ZCM(x; y)dx+N(x; y)dy = Z ba �M(x(t); y(t))dxdt +N(x(t); y(t))dydt� dt: (94)(You also learn in Cal
ulus 3 that this de�nition is self-
onsistent: no matterwhat 
ontinuously di�erentiable, non-stop parametrization of C you 
hoose37,you get the same answer.)A 
asual glan
e at (94) suggests that we have used the following misleadingequality:\M(x; y)dx +N(x; y)dy = �M(x(t); y(t))dxdt +N(x(t); y(t))dydt� dt:" (95)But that is not quite right. The left-hand side and right-hand side are not the sameobje
t. Only after we are given a parametrized 
urve 
 
an we produ
e, from theobje
t on the left-hand side, the fun
tion of t in bra
es on the right-hand side.In addition, in 
onstru
ting the integral on the right-hand side of (94), we didnot 
on�ne our substitutions to the integrand of the integral on the left-hand side.We made the substitution \RC ! R ba " as well. Attempting to equate pie
es of thenotation on the left-hand side with pie
es of the notation on the right-hand sidehelps lead to a wrong impression of what is equal to what. Instead of making thisfalla
ious attempt, understand that (94) is simply a de�nition of the whole left-handside. The data on the left-hand side are re
e
ted in the 
omputational pres
riptionon the right-hand side as follows:1. The right-hand side involves fun
tions x(t); y(t) on a t-interval [a; b℄. Thesetwo fun
tions and the interval [a; b℄ give us a parametrized 
urve 
, de�ned by
(t) = (x(t); y(t)). The 
urve C on the left-hand side tells us whi
h 
's areallowed: only those having tra
e C.2. On
e we 
hoose su
h a 
, what is the integrand on the right-hand side? It isexa
tly the quantity (Mdx+Ndy)[
℄(t) in (91). The e�e
t of the \M(x; y)dx+N(x; y)dy" on the left-hand side has been to produ
e the fun
tion (Mdx +Ndy)[
℄ when fed the parametrized 
urve 
.37Subje
t to the other 
onditions in the previous footnote52



Thus, the di�erential that appears as the integrand on the left-hand side is exa
tlythe ma
hine we des
ribed at the start of this se
tion.There is one other topi
 in Cal
ulus 3 that makes referen
e to di�erentials (if theinstru
tor 
hooses to dis
uss them at that time): the tangent-plane approximationof a fun
tion of two variables. The di�erentials you learned about in that 
ontextare not quite the same gadgets as the ma
hines we have de�ned. They are related,but di�erent. To demonstrate the pre
ise relation, there are two things we wouldneed to do: (1) restri
t attention to exa
t di�erentials, and (2) dis
uss what kind ofgadget the value of a di�erential at a point|an expression of the formM(x0; y0)dx+N(x0; y0)dy|is. This would require a digression that, in the interests of both brevityand 
omprehensibility, we omit.2.5.3 Existen
e/uniqueness theorem for DEs in di�erential formRe
all that an initial-value problem, with dependent variable y and independentvariable x, 
onsists of a derivative-form di�erential equation together with an initial
ondition of the form y(x0) = y0. The di�erential-form analog of an initial-valueproblem is a di�erential-form DE together with a point (x0; y0) of the xy plane. Theanalog of \solution of an initial value problem" is a solution 
urve of a di�erential-formDE that passes through the given point (x0; y0). In su
h a 
ontext we may (loosely)refer to the point (x0; y0) as an \initial 
ondition" or \initial-
ondition point", andto the 
ombination \di�erential-form DE, together with point (x0; y0)" as an \initial-value problem in di�erential form". But be
ause there is neither an independentvariable nor a dependent variable in a di�erential-form DE, this terminology is notas well-motivated as it is for derivative-form DEs, where the terminology stems fromthinking of the independent variable as time.Just as for derivative-form IVPs, there is an Existen
e and Uniqueness Theoremfor di�erential-form IVPs, whi
h we will state shortly. To understand what's behinda restri
tion that will appear in the statement of this theorem, let us look again atequation (88). Suppose (x0; y0) lies on a smooth solution 
urve C of Mdx+Ndy = 0.If M(x0; y0) and N(x0; y0) are not both zero, then w = M(x0; y0)i + N(x0; y0)j is anonzero ve
tor, and (88) tells us that the velo
ity ve
tor at (x0; y0) of any 
ontinuouslydi�erentiable, non-stop parametrization of C must be perpendi
ular to w. Hen
e w
ompletely determines the slope of the line tangent to C at (x0; y0). This pla
es a verystrong restri
tion on possible solution 
urves through (x0; y0): there is one and onlyone possible value for the slope of their tangent lines.But if M(x0; y0) and N(x0; y0) are both zero, then M(x0; y0)i+N(x0; y0)j is thezero ve
tor, and every ve
tor is perpendi
ular to it. Said another way, if (x(t); y(t))is a parametrization of any smooth 
urve passing through (x0; y0), say when t = t0,then (88) is satis�ed at t = t0, and so is (87). There is no restri
tion at all on theslope!Therefore at su
h a point (x0; y0), in general we 
annot expe
t solutions of the53



di�erential equationMdx+Ndy = 0 to be as \predi
table" as they are whenM(x0; y0)and N(x0; y0) are not both zero. In this sense, the points (x0; y0) at whi
h M(x0; y0)and N(x0; y0) are both zero are \bad", so we give them a spe
ial name:De�nition 2.44 A point (x0; y0) is a singular point of the di�erentialMdx+Ndy ifM(x0; y0) = 0 = N(x0; y0).Re
all that a derivative-form DE, with independent variable x and dependentvariable y, is said to be in standard form if the DE is of the formdydx = f(x; y): (96)If the graph of a solution of (96) passes through (x0; y0), then the slope of the graphmust be f(x0; y0). This is true even if the IVPdydx = f(x; y); y(x0) = y0 (97)has more than one solution (whi
h 
an happen if the hypotheses of the Existen
e andUniqueness Theorem for derivative-form IVPs are not met, e.g. if �f�y is not 
ontinuousat (x0; y0)). So in some sense, a singular point (x0; y0) of a di�erentialMdx+Ndy isa worse problem for the di�erential-form IVP \Mdx+Ndy = 0 with initial 
ondition(x0; y0)" than we ever see for the derivative-form IVP (97).It is diÆ
ult to de�ne \maximal solution 
urve" for an equationMdx+Ndy = 0on a region in whi
h Mdx+Ndy has a singular point. But in regions free of singularpoints, there are no te
hni
al diÆ
ulties. We make the following de�nition38:De�nition 2.45 Let R be a region in whi
h the di�erential Mdx + Ndy has nosingular points. A solution 
urve C of the equation Mdx+Ndy = 0 is maximal in Rif C is 
ontained in R and either1. C is a 
losed 
urve (i.e. C has a 
ontinuously di�erentiable, non-stop paramet-rization 
, with domain a 
losed interval [a; b℄, for whi
h 
(a) = 
(b)), or2. C is an \open 
urve without endpoints" (i.e. C has a 
ontinuously di�erentiable,non-stop parametrization with domain an open interval,) and C is not a subsetof another solution 
urve in R of the same DE.38The terminology \solution 
urve that is maximal in a region" in De�nition 2.45 was inventedfor these notes; the author does not know whether it is standard.
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Less formally, a solution 
urve is maximal in R if it is inextendible to a largersolution 
urve in R. A smooth 
losed 
urve never has any dire
tions in whi
h it
ould be extended (without violating the de�nition of \smooth 
urve"), but an open
urve without endpoints may or may not be extendible. For example, the graph C1of y = 1=x in the open �rst quadrant R is an open 
urve without endpoints that isinextendible be
ause it already \runs o� to in�nity in both dire
tions". It is a solution
urve of the equation ydx + xdy = 0 that is maximal in R. (This di�erential has asingular point at the origin, but the origin is not in R, so De�nition 2.45 applies.)The portion C2 of C1 for whi
h 1 < x < 2 is a solution 
urve of the same DE, but it isnot maximal in R, sin
e it 
an be extended to the larger solution 
urve C1 (of 
ourse,it 
an be extended to solution 
urves of intermediate size).We 
an now state the di�erential-form analog of the Existen
e and UniquenessTheorem for derivative-form initial-value problems:Theorem 2.46 Suppose M and N are 
ontinuously di�erentiable fun
tions on anopen region R in R2, and that Mdx + Ndy has no singular points in R. Then forevery (x0; y0) 2 R, there exists a unique maximal solution 
urve of Mdx +Ndy = 0passing through (x0; y0).Like the analogous theorem for derivative-form initial-value problems, this the-orem gives suÆ
ient 
onditions under whi
h a desirable 
on
lusion 
an be drawn,not ne
essary 
onditions. There are di�erential-form equations Mdx+Ndy = 0 thathave a unique maximal solution 
urve through a point (x0; y0) even though (x0; y0) isa singular point of the di�erential. But there are also di�erentials for whi
h M andN are 
ontinuously di�erentiable in the whole xy plane but are both zero at somepoint (x0; y0), and for whi
h the equation Mdx + Ndy = 0 has no solution 
urvethrough (x0; y0), or several maximal solution 
urves through (x0; y0), or in�nitelymany maximal solution 
urves through (x0; y0).For exa
t di�erentials, singular points are familiar to students who've taken Cal-
ulus 3, but under another name:Example 2.47 Suppose Mdx+Ndy is exa
t on a region R, and let F be a fun
tionon R for whi
h Mdx + Ndy = dF . Then M = �F�x and N = �F�y . Hen
e (using themathemati
ian's notation \() "), for a given point (x0; y0) 2 R,(x0; y0) is a singular point of dF() M(x0; y0) = 0 = N(x0; y0)() �F�x (x0; y0) = 0 = �F�y (x0; y0)() (x0; y0) is a 
riti
al point of F:Thus, the singular points of dF are exa
tly the 
riti
al points of F .55



2.5.4 Solutions (as opposed to \solution 
urves" or \parametrized solu-tions") of DEs in di�erential formDe�nition 2.48 An equationG(x; y) = 0 (or G(x; y)= any real number 
0) (98)is a solution of a di�erential-form equationM(x; y)dx+N(x; y)dy = 0 (99)on a region R if(i) the portion of the graph of (98) that lies in R 
ontains a smooth 
urve, and(ii) every smooth 
urve in R 
ontained in the graph of (98) is a solution 
urve of(99).If R = R2 then we usually omit mention of the region, and say just that (98) isa solution of (99).IfMdx+Ndy has no singular points in R, then a solution (98) is 
alled maximalin R if its graph is a solution 
urve of Mdx +Ndy = 0 that is maximal in R.Observe that there is a 
ertain stru
tural similarity between De�nition 2.4 andDe�nition 2.48 (\impli
itsolutions", later re-named \impli
it solutions" in De�nition2.5, of a derivative-form DE). In both de�nitions, the same obje
t|an equation of theform (98)|is being given a solution-related name (\impli
it solution" in the settingof derivative-form DEs, \solution" in the setting of di�erential-form DEs). In ea
hde�nition there are two 
riteria to be met, of this form:(i) there is at one obje
t with a 
ertain property, say Property X, and(ii) every obje
t with Property X also has some other property relatedto another type of solution.We will elaborate on this similarity later.Example 2.49 The 
ir
le with equationx2 + y2 = 53 (100)is a solution of x dx+ y dy = 0: (101)Sin
e the only singular point of x dx + y dy is the origin, whi
h does not lie onthe graph of (100), the equation x2 + y2 = 53 is a solution of (101) that is maximalin the region fR2 minus the origing. 56



Example 2.50 The equation xy = 1is a solution of ydx+ xdy = 0: (102)The graph, a hyperbola, 
onsists of two maximal solution 
urves that are maximal inthe region fR2 minus the origing. (Just as in the previous example, the origin is theonly singular point of the di�erential.) One of the maximal solution 
urves admitsthe 
ontinuously di�erentiable, non-stop parametrization x(t) = t; y(t) = 1t ; t 2(0;1), while the other admits the 
ontinuously di�erentiable, non-stop parametriza-tion x(t) = t; y(t) = 1t ; t 2 (�1; 0).More generally, for every real number C, the equationxy = Cis a solution of the same DE (102). For most C, the graph is a hyperbola, but the
ase C = 0 is ex
eptional. The graph ofxy = 0 (103)is a pair of 
rossed lines, the x- and y-axes. Note that this graph is not a smooth 
urve,nor is it the disjoint union of two smooth 
urves the way a hyperbola is (\disjoint"meaning that the two 
urves have no points in 
ommon). We 
an verify that (103) isindeed a solution of (102) by observing that the parametrized 
urves x(t) = t; y(t) =0; t 2 R (a 
ontinuously di�erentiable, non-stop parametrization of the x-axis) andx(t) = 0; y(t) = t; t 2 R (a 
ontinuously di�erentiable, non-stop parametrization ofthe y-axis) both satisfy y(t)dxdt + x(t)dydt � 0:So we 
an express the graph of xy = 0 as the union of two solution 
urves of (102)|the graph of y = 0 and the graph of x = 0|but, unlike for the graph of xy = C, withC 6= 0 we 
annot do it without having the two solution 
urves interse
t. The sour
eof this di�eren
e is that only for C = 0 does the graph of xy = C 
ontain (0; 0), asingular point of ydx+ xdy.The next example is very general. It is key to understanding the di�erentialequations that are 
alled exa
t.
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Example 2.51 (Exa
t equations, part 1) Suppose Mdx + Ndy is an exa
t dif-ferential on a region R (see De�nition 2.33), and let F be a di�erentiable fun
tion onR for whi
h Mdx +Ndy = dF . Then (86) be
omes�F�x dx + �F�y dy = 0: (104)Suppose that C is a solution 
urve of (104), and that g(t) = (x(t); y(t)), t 2 I, is a
ontinuously di�erentiable parametrization of C. Then (87) says�F�x (x(t); y(t))dxdt + �F�y (x(t); y(t))dydt = 0: (105)By the Chain Rule, the left-hand side of (105) is just ddtF (x(t); y(t)). Thus, (87)simpli�es, in this 
ase, to ddtF (x(t); y(t)) = 0 for all t 2 I: (106)Sin
e I is an interval, this implies that F (x(t); y(t)) is 
onstant in t. Thus, for everyparametrized solution (x(t); y(t)) of the equation dF = 0 on R, there is a (spe
i�
,non-arbitrary) 
onstant 
0 su
h thatF (x(t); y(t)) = 
0 (107)for all t 2 I: This implies that every solution 
urve of (104) in R is 
ontained in thegraph of (107) for some value of the 
onstant 
0.Now, �x a number 
0, and 
onsider the equationF (x; y) = 
0: (108)Is this equation a solution of (104) in R, a

ording to De�nition 2.48? The answeris yes, provided that 
riterion (i) of the de�nition is met. If this 
riterion is met, letC be a smooth 
urve in R that is 
ontained in the graph of (108). Let 
 be su
h a
ontinuously di�erentiable parametrization of C, and write 
(t) = (x(t); y(t)), t 2 I.Sin
e every point of C lies on the graph of (108), equation (107) is satis�ed for allt 2 I. Di�erentiating both sides of (107) with respe
t to t, we �nd that (106) issatis�ed. But, by the Chain Rule, the left-hand side of (106) is exa
tly the left-handside of (105), so (105) is satis�ed. Therefore C is a solution 
urve of (104). Hen
e
riterion (ii) of De�nition 2.48 is met, so (108) is a solution of (104) in R.De�ning \general solution" for equations in di�erential form is tri
kier than itis for derivative form. One reason is that in di�erential form we have the notionsboth of solution 
urve|a geometri
 obje
t|and solution (in the sense of De�nition2.48)|an algebrai
 equation (i.e. a non-di�erential equation). The other reason is58



that for di�erential-form DEs, some of the problems 
aused by singular points haveno analog in derivative-form DEs. We will use the following de�nition:De�nition 2.52 39 The general solution of a di�erential-form equationMdx +Ndy = 0 (109)in a region R is the 
olle
tion of all solution 
urves in R.We 
all a 
olle
tion of algebrai
 equations in x and y the general solution of (109)in R (or on R), in impli
it form, if(i) ea
h equation in the 
olle
tion is a solution in the sense of De�nition 2.48,(ii) every solution 
urve of (109) in R that does not pass through a singular pointof Mdx +Ndy is 
ontained in the graph of some equation in the 
olle
tion, and(iii) every solution 
urve of (109) in R, whether or not it passes through a singularpoint ofMdx+Ndy, is 
ontained in the union of graphs of �nitely many or 
ountablymany40 equations in the 
olle
tion.When no region R is mentioned expli
itly, it is assumed that R is the 
ommon implieddomain of M and N .We will explain the reason for 
riterion (iii) later.Example 2.53 (Exa
t equations, part 2) Suppose we are given a di�erential-form equation (109) that is exa
t on a region R, and we have found a fun
tion Fsu
h that Mdx + Ndy = dF on R. Then Example 2.51 shows that the generalsolution of (104) on R, in impli
it form, is the 
olle
tion of equationsF (x; y) = C; (110)where C is a \semi-arbitrary" 
onstant: the allowed values of C are those for whi
hthe graph of (110) 
ontains a smooth 
urve in R.Above, if we assume more about the di�erential, it is easier to tell whi
h C's areallowed:39This de�nition was invented for these notes; it is not standard.40The set N of natural numbers f1; 2; 3; : : :g is an in�nite set that is 
alled 
ountable, or 
ountablyin�nite. More generally, the empty set and any set that 
an be indexed by a subset of N (forexample, a 
olle
tion of three 
urves C1; C2; C3, or an in�nite 
olle
tion of 
urves fCng1n=1) is 
alled
ountable, and we say it has 
ountably many elements. Every �nite set is 
ountable, so the phrase\�nitely many or 
ountably many" is redundant, but the author nonetheless wanted the student tosee \�nitely many" expli
itly in De�nition 2.52. Not every in�nite set is 
ountable; the set of allreal numbers is an un
ountable set. 59



Example 2.54 (Exa
t equations, part 3) In the setting of Example 2.53, assumeadditionally thatM and N (=�F�x and �F�y , respe
tively) are 
ontinuously di�erentiablein R, and that Mdx + Ndy has no singular points (equivalently, F has no 
riti
alpoints) in R. We 
laim that in this 
ase, the general solution of (104) on R, in impli
itform, is (110), but where the allowed values of C are those for whi
h the graph of(110) 
ontains even a single point of R. Equivalently, the set of allowed values of Cis the range of F on the domain R.To see that this is the 
ase, it suÆ
es to show that if, for a given C, the graphof (110) 
ontains a point (x0; y0) of R, then the graph 
ontains a smooth 
urve in R.So, with C held �xed, assume there is su
h a point (x0; y0). Sin
e we are assumingthat F has no 
riti
al points in R, the point (x0; y0) is not a 
riti
al point of F , so atleast one of the partial derivatives �F�x (x0; y0); �F�y (x0; y0) is not zero. Then:� If �F�y (x0; y0) 6= 0, then, sin
e we are assuming that �F�x and �F�y are 
ontinuous onR, we 
an apply the Impli
it Fun
tion Theorem (Theorem 2.3) to dedu
e thatis an open re
tangle I1�J1 
ontaining (x0; y0), and a 
ontinuously di�erentiablefun
tion � with domain I1 su
h that the portion of the graph of (108) 
ontainedin I1 � J1 is the graph of y = �(x), i.e. the set of points f(x; �(x)) j x 2 I1g.This same set is the tra
e of the parametrized 
urve given by� x(t) = ty(t) = �(t) � ; t 2 I1:This parametrized 
urve 
 is 
ontinuously di�erentiable, and it is non-stop sin
edxdt = 1 for all t 2 I1. Hen
e the tra
e of 
 is a smooth 
urve 
ontained in thegraph of (110). Sin
e (x0; y0) 2 R, and R is an open set, a small enough segmentof this 
urve, passing through (x0; y0), will be 
ontained in R.� If �F�x (x0; y0) 6= 0, then (reversing the roles of x and y in the Theorem|e.g. byde�ning ~F (x; y) = F (y; x)), the Impli
it Fun
tion Theorem tells us that there isan open re
tangle I1 � J1 
ontaining (x0; y0), and a 
ontinuously di�erentiablefun
tion � with domain J1 su
h that the portion of the graph of (108) 
ontainedin I1 � J1 is the graph of x = �(y), i.e. the set of points f(�(y); y) j y 2 J1g.This graph is exa
tly the tra
e of the parametrized 
urve 
 given by� x(t) = �(t)y(t) = t � ; t 2 J1:As in the previous 
ase, 
 is 
ontinuously di�erentiable and non-stop. Hen
ethe tra
e of 
 is again a smooth 
urve 
ontained in the graph of (110), andagain a small enough segment of it, passing through (x0; y0), will be 
ontainedin R. 60



Example 2.55 Consider again the DE from Example 2.49,xdx + ydy = 0: (111)The left-hand side is the exa
t di�erential dF (on the whole plane R2), whereF (x; y) = 12(x2 + y2). The fun
tion F has only one 
riti
al point, (0; 0), and thefun
tions M(x; y) = x and N(x; y) = y are 
ontinuous on the whole xy plane. So ifwe let R = fR2 minus the origing, there are no 
riti
al points in R, and Example 2.54applies. For every C > 0, there is a point in R for whi
h 12(x2 + y2) = C. Thereforethe general solution of xdx + ydy = 0 in R, in impli
it form, is12(x2 + y2) = C; C > 0;whi
h we 
an write more simply asx2 + y2 = C; C > 0: (112)The graph of ea
h solution is a 
ir
le. The 
olle
tion of these 
ir
les is what we 
allthe general solution of (111) in R (a

ording to De�nition 2.52), and the generalsolution in R �lls out the region R.If we look at (111) on the whole xy plane rather than just R, then Example 2.54no longer applies (be
ause of the 
riti
al point at the origin), but Example 2.53 stillapplies. From the above, every point of the xy plane other than the origin lies ona solution 
urve with equation x2 + y2 = C with C > 0. For C = 0, the equation\F (x; y) = C" be
omes x2 + y2 = 0. The graph of this equation is the single point(0; 0), and 
ontains no smooth 
urves. For C < 0, the graph of x2+ y2 = C is empty.Hen
e the general solution of (111) in impli
it form, with no restri
tion on the region,is the same as the general solution on R in impli
it form, namely (112).Example 2.56 Consider again the DE from Example 2.50,ydx+ xdy = 0: (113)The left-hand side is the exa
t di�erential dF (on the whole plane R2), whereF (x; y) = xy. The fun
tion F has only one 
riti
al point, (0; 0), and the fun
tionsM(x; y) = y and N(x; y) = x are 
ontinuous on the whole xy plane. So, as in theprevious example if we let R = fR2 minus the origing, there are no 
riti
al pointsin R, and Example 2.54 applies. This time, for every C 2 R there is a point in Rfor whi
h xy = C. Therefore the general solution of ydx+ xdy = 0 in R, in impli
itform, is xy = C; (114)where C is a \true" arbitrary 
onstant|every real value of C is allowed.61



Note that for C 6= 0, the graph of xy = C 
onsists of two solution 
urves (thetwo halves of a hyperbola) that are maximal in R. For C = 0, there are four solution
urves that are maximal in R: the positive x-axis, the negative x-axis, the positivey-axis, and the negative y-axis. The general solution of (113) (without the words \inimpli
it form") is the 
olle
tion of all these half-hyperbolas and the four open half-axes 
ir
les is what we 
all (111) in R (a

ording to De�nition 2.52). The generalsolution in R again �lls out R.If we look at (113) on the whole xy plane rather than just R, then from thepre
eding, the only point we do not yet know to be on a solution 
urve is the origin.But, as we saw in Example 2.50, the origin is on two inextendible solution 
urves: thex-axis and the y-axis. So the general solution (without the words \in impli
it form",and with no restri
tion on the region) is the set of the half-hyperbolas noted above,plus the x-axis and the y-axis. The general solution of (113) in impli
it form, with norestri
tion on the region, is again (114). But in 
ontrast to Example 2.55, this timethe general solution �lls out the whole plane R2.Students who've taken Cal
ulus 3 have studied equations taht are expli
itly ofthe form \F (x; y) = C" before. For a given 
onstant C and fun
tion F , the graph ofF (x; y) = C is 
alled a level-set of F . (Your 
al
ulus textbook may have used theterm \level 
urve" for a level-set of a fun
tion of two variables, be
ause most of thetime|though not always|a non-empty level-set of a fun
tion of two variables is asmooth 
urve or a union of smooth 
urves.41) A level-set may have more than one
onne
ted 
omponent, su
h as the graph of xy = 1: there is no way to move along theportion of this hyperbola in the �rst quadrant, and rea
h the portion of the hyperbolain the third quadrant. Our de�nition of \smooth 
urve" prevents any level-set withmore than one 
onne
ted 
omponent from being 
alled a smooth 
urve. However, itis often the 
ase that a level-set is the union of several 
onne
ted 
omponents, ea
h ofwhi
h is a smooth 
urve. From Examples 2.53 and 2.54 we 
an dedu
e the following:41Note to students. This is true provided that the se
ond partial derivatives of the fun
tion existand are 
ontinuous on the domain of F . The de�nition of \most of the time" is beyond the s
opeof these notes. However, one instan
e of \most of the time" is the 
ase in whi
h there are only�nitely many C's for whi
h the graph of F (x; y) = C is a non-empty set that is not a union of oneor more smooth 
urves. For example, for the equation x2 + y2 = C, only for C = 0 is the graphboth non-empty and not a smooth 
urve.Note to instru
tors: The \most of the time" statement is a 
ombination of the Regular ValueTheorem and Sard's Theorem for the 
ase of a C2 real-valued fun
tion F on a two-dimensionaldomain. The Regular Value Theorem asserts that if C is not a 
riti
al value of F (i.e. if F�1(C)
ontains no 
riti
al points), then F�1(C) is a submanifold of the domain, whi
h for the dimensionsinvolved here means \empty or a union of smooth 
urves". Sard's Theorem asserts that the set of
riti
al values (not 
riti
al points!) of F is nowhere dense.
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If F has 
ontinuous se
ond partial derivatives in the regionR, then the general solution of dF = 0 on R (see �rst senten
e of De�ni-tion 2.52) is the set of smooth 
urves in R that are 
ontained inlevel-sets of F .If we additionally assume that F has no 
riti
al pointsin R, then the general maximal solution of dF = 0 on R|i.e.the 
olle
tion of solution 
urves that are maximal in R|isthe 
olle
tion of 
onne
ted 
omponents of level-sets of F in R.(See \Some 
autionary notes on our terminology", item 1, later in this se
tion.)
9>>>>>>>>>>>>=>>>>>>>>>>>>; (115)

Neither of these statements is an \if and only if". For example, the fun
tionF (x; y) = xy has a 
riti
al point at the origin, but the general solution of dF = 0 isstill the set of smooth 
urves inR2 that are 
ontained in level-sets of F . (One of thesesmooth 
urves is the x-axis, one is the y-axis, and the others are half-hyperbolas.)For an example of a level-set that 
ontains smooth 
urves, but is not a union ofsmooth 
urves (i.e. has a point that's not 
ontained in any of the smooth 
urves inthe level-set), see Example 2.59 later in this se
tion.The next example (in whi
h the DE is not exa
t), is in
luded to illustrate aninteresting phenomenon. The student should be able to follow the author's steps, butis not expe
ted to understand how the author knew to take these steps.Example 2.57 Consider the DE2xy dx+ (y2 � x2)dy = 0: (116)This DE is not exa
t on any region in the xy plane. However, the fun
tionsM(x; y) =2xy and N(x; y) = y2 � x2 are 
ontinuously di�erentiable on the whole plane, andthe only point at whi
h they are both zero is (0; 0). So again, we have a dif-ferential with one singular point, whi
h happens to be the origin42 Again lettingR = fR2 minus the origing, Theorem 2.46 guarantees us that through ea
h point(x0; y0) 6= (0; 0), there exists a unique solution 
urve of (116). (We 
ould have usedthis theorem similarly in Examples 2.55 and 2.56, but there was no real need sin
ewe were able to solve these equations qui
kly, and just see dire
tly that every pointof R lay on a unique maximal-in-R solution 
urve.)Observe that the positive x-axis is a solution-
urve: if we set x(t) = t; y(t) =0; t 2 (0;1), then the tra
e of this parametrized 
urve is the positive x-axis, and forall t 2 (0;1) we have2x(t)y(t) dxdt + (y(t)2 � x(t)2)dydt = 2t � 0 � 1 + (�t2) � 0 = 0:42In general, singular points 
an o

ur anywhere in the xy plane. The reason that the origin isused in so many examples in these notes is to simplify the algebra, so that the student may fo
usmore easily on the 
on
epts. 63



Similarly, the negative x-axis is a solution-
urve. The uniqueness statement in The-orem 2.46 guarantees us that the positive and negative x-axes are the only solution
urves 
ontaining a point on either of these open half-axes. Therefore no other solu-tion 
urve in R 
ontains a point (x; y) for whi
h y = 0; every other solution 
urvesin R lies either entirely in the region R+ = f(x; y) j y > 0g, the half-plane abovethe x-axis, or entirely in the region R� = f(x; y) j y < 0g, the half-plane below thex-axis.On R+, and also on R�, equation (116) is algebrai
ally equivalent to1y2 �2xy dx + (y2 � x2)dy� = 0: (117)But as the student may verify,1y2 �2xy dx+ (y2 � x2)dy� = 2xy dx + (1� x2y2 )dy= d�x2y + y�= d�x2 + y2y � :So on R+, and also on R�, the left-hand side of (117) is exa
t; it is dF , whereF (x; y) = x2+y2y . This di�erential has no singular points in R+ or R�, so Example2.54 applies. The general solution of (117), in impli
it form, on either of these regions,is x2 + y2y = C; (118)where set of allowed values of C is the range of F on ea
h region. Sin
e the sign ofx2+y2y is the same as the sign of y, this means that on R+, only positive C's will beallowed, and on R�, only negative C's will be allowed. To see that these are the onlyrestri
tions on C, just set x = 0 in (117), and see that F (0; C) = C.Now for some algebrai
 rearrangement. Let us write C = 2b in (118). Then b isa semi-arbitrary 
onstant with exa
tly the same restri
tions as C (b > 0 for solution
urves in R+, b < 0 for solution 
urves in R�). Then on ea
h region,x2 + y2y = 2b() x2 + y2 = 2by() x2 + y2 � 2by = 0() x2 + y2 � 2by + b2 = b2() x2 + (y � b)2 = b2: (119)64



Figure 4: Some solution 
urves of 2xy dx+ (y2 � x2)dy = 0. (The graphing utility used does notdo a good job near the origin; there should be no gap in any of the 
ir
les.)The graph of (119) in R2 is a 
ir
le of radius jbj 
entered at (0; b) on the y-axis; thegraph in R is the 
ir
le with the origin deleted. Thus, these 
ir
les-with-origin-deletedare the solution 
urves of (117) on R+ and on R�. But sin
e (117) is algebrai
allyequivalent to (116) on these regions, the same 
urves are all the solution 
urves of(116) in these regions.We have now found all the solution 
urves of (116) in R that do not interse
t thex-axis, as well as all those that do interse
t it. So we have all the solution 
urves inR = fR2 minus the origing. If we now re-in
lude the origin, we see that the origin lieson every one of the 
ir
les (119), as well as on the x-axis. With the origin re-in
luded,it is easy to see that the full x-axis is a solution 
urve of (116). We leave the studentto 
he
k that ea
h full 
ir
le (119), with the origin in
luded, is also a solution 
urveof (116).So it appears that the general solution of (116) 
onsists of all 
ir
les 
enteredon the y axis, plus one \ex
eptional" 
urve, the x-axis. We will see shortly that thisdoes not meet our de�nition of \general solution", however. But what is 
orre
t isthat the general solution of (116), in impli
it form, isfx2 + (y � b)2 = b2 j b 6= 0g and fy = 0g: (120)An alternative way of expressing the general solution in impli
it form is as follows.In (118), C 
an be any nonzero 
onstant, so we may write C as 1K , where the allowedvalues of K are also anything other than zero. We 
an then rewrite (118) as y =K(x2 + y2). The solution 
urve that lie in R+ have K > 0; those that lie in R+ haveK < 0. These give all the impli
it-form solutions in the \b-family", just expressedin di�erent-looking but algebrai
ally equivalent way. But magi
ally, if we now allowK = 0, we get the lonely y = 0 solution as well. So we 
an also write the generalsolution of (116), in impli
it form, as 65



y = C(x2 + y2) (121)where C is a 
ompletely arbitrary 
onstant. (We have renamed K ba
k to C justbe
ause we felt like it.)Now, why is it that the general solution of (116) (no \in impli
it form") is notthe 
olle
tion of 
ir
les plus the x-axis? In Figure 4, start at a point other than theorigin on any of the 
ir
les. Move along the 
ir
le in either dire
tion till you rea
hthe origin. When you rea
h the origin 
ontinue moving, but go out along a di�erent
ir
le, either on the same side of the y-axis as the �rst 
ir
le or on the opposite side,whatever you feel like. Stop before you rea
h the origin again. Erase the endpointsof the 
urve you just drew (see the se
ond paragraph after De�nition 2.41), and youhave a perfe
tly good, smooth, solution 
urve that is not 
ontained in any 
ir
le orin the x-axis.You 
an let the x-axis into this game as well. For example, start on the positivex-axis, move left till you rea
h the origin, and then move out along one of the 
ir
les.The phenomenon above is the reason we allow possibility (iii) in De�nition 2.52.
Some 
autionary notes on our terminology:1. An extremely 
areful reader may have noti
ed that in the �rst part of theDe�nition 2.52 we do not require the solution 
urves to be maximal, as onemight have expe
ted from 
omparison with De�nition 2.18 and the dis
ussionbefore that de�nition. The reason is that we have de�ned maximal solution
urves of Mdx+Ndy = 0 only in regions in whi
h Mdx+Ndy has no singularpoints, while De�nition 2.52 allows for singular points. Be
ause we do not insiston maximality of the 
urves in De�nition 2.52, there is redundan
y built intothis de�nition that we were able to avoid in De�nition 2.18: the general solutionof (109) in
ludes solution 
urves that are subsets of other solution 
urves.Example 2.57 illustrates one of the reasons it is diÆ
ult to give a satisfa
tory,useful, general de�nition of \maximal solution 
urve" of Mdx + Ndy = 0 in aregion that in
ludes singular points ofMdx+Ndy. For the sake of 
on
reteness,using Figure 4 for referen
e, start at the point P = (0; 1) and move 
ounter-
lo
kwise along the \upper 
ir
le" x2+(y�1)2 = 1. When you rea
h the origin,
ontinue by moving along the mirror-image \lower 
ir
le" x2 + (y + 1)2 = 1,
lo
kwise, until you rea
h the point Q = (0;�1). Deleting the endpoints in or-der to meet our de�nition of \smooth 
urve", you now have an open S-shaped
urve smooth from P to Q. This 
urve is extendible to a larger solution 
urve:imagine dragging the starting-point P 
lo
kwise along the upper 
ir
le, anddragging Q 
lo
kwise along the lower 
ir
le. We 
an drag P to any point in the66



open �rst quadrant lying on the upper 
ir
le, and 
an drag Q to any point inthe open third quadrant lying on the lower 
ir
le. No matter how far we dragP or Q (subje
t to the quadrant restri
tions), the 
urve we get is a solution
urve of (116) that is extendible to a larger solution 
urve; we 
an always dragthe endpoints farther, getting them 
loser and 
loser to the origin. Were we toallow P or Q to rea
h the origin, we would violate our de�nition of \smooth
urve" (e.g. were we to let them both rea
h the origin, we'd have a �gure-8).So there is no largest smooth solution 
urve that 
ontains our S-shaped solution
urve.2. Do not be misled by the terminology \the general solution of (109), in R, inimpli
it form." While there is only one general solution of (109) in R|the
olle
tion of all solution 
urves in R|there are in�nitely many impli
it forms ofthis general solution. Sometimes two di�erent impli
it forms of the same generalsolution in R may di�er only in \trivial" ways; for example, if one impli
it formof the general solution in R is a family of equations F (x; y) = C, then anotheris 2F (x; y) = C, and another is F (x; y)3 = C. But this is not the only waythat the impli
it forms of the same general solution 
an di�er. We saw this inExample 116, and we see it again in the next example.3. In De�nition 2.52, the author 
hose to reserve the term \general solution" (withno extra words other than, perhaps, \in R") for the 
olle
tion of all solution
urves, be
ause 
urves, and not fun
tions or equations, are what a DE in dif-ferential form is looking for. An unfortunate 
onsequen
e of this 
hoi
e is thatone must then de
ide what other term to use for a 
olle
tion of algebrai
 equa-tions whose graphs yield all the solution 
urves. The author's 
hoi
e, \generalsolution in impli
it form", has some de�nite disadvantages. Among these is thefa
t that the general solution in impli
it form 
an be very expli
it, as in thenext example.Example 2.58 Consider the DE xdy � ydx = 0: (122)The student may 
he
k that every straight line through the origin|whether horizon-tal, verti
al, or oblique|is a solution 
urve.The only singular point of xdy � ydx is the origin. Therefore in R = fR2 minusthe origing, there is a unique maximal solution 
urve through every point. If we takethe straight lines through the origin, and delete the origin, we get the 
olle
tion ofopen rays emanating from the origin. Every point of R lies on one and only one su
hray. Therefore these are all the solution 
urves of (122) in R. It follows that thereare no inextendible solution 
urves in R2 other than what we get by re-in
luding theorigin, i.e., the family of all straight lines through the origin.67



There are several ways we 
an write equations for this family of straight lines,i.e. write the general solution of (122) in impli
it form, one of whi
h isfy = Cxg and fx = 0g: (123)This grouping puts all the non-verti
al lines into one family, and makes the verti
alline look lonely. But another simple way of writing the general solution of (122) inimpli
it form is fx = Cyg and fy = 0g: (124)This groups all the non-horizontal lines together, and orphans the horizontal lineinstead. In 
ontrast to what we saw in Example 116, in the 
urrent example thereis no single family of equations, parametrized by one real-valued arbitrary (or semi-arbitrary) 
onstant, that 
onstitutes a general solution of (122) in impli
it form.Example 2.59 (Level-set with a 
orner) Let F (x; y) = y3 � jxj3. This fun
-tion has 
ontinuous se
ond partial derivatives on the whole plane R2 (for example�F�x (x; y) = � �3x2; x � 03x2; x � 0 , so �2F�x2 (x; y) = � �6x; x � 06x; x � 0 ). It has one 
riti
alpoint, the origin. The level-set 
ontaining this 
riti
al point is the graph ofy3 � jxj3 = 0; (125)whi
h is simply the graph of y = jxj. The portion of this graph in the open �rstquadrant (y = x; x > 0) is a smooth 
urve 
ontained in this level-set, and so is theportion of this graph in the open se
ond quadrant. But the origin is a point of thislevel-set that is not 
ontained in any smooth 
urve in the level-set.Equation (125) is a solution ofy2dy +� �3x2; x � 03x2; x � 0 � dx = 0; (126)it meets both 
riteria in De�nition 2.48. However, the graph of (125) 
ontains a point,(0; 0), that is not on any solution 
urve of (126) (see De�nitions 2.42 and 2.41). Thus,in general, the graph of a solution \F (x; y) = C" of dF = 0 
an in
lude points thatdo not lie on any solution 
urve of dF = 0.2.6 Relation between di�erential form and derivative formSuppose that C is smooth 
urve, and 
 a 
ontinuously di�erentiable, non-stop para-metrization of C, with domain-interval I. Write 
(t) = (f(t); g(t)) (for what we are68



about to do, writing \
(t) = (x(t); y(t))" would lead to 
onfusion). Let's 
all subin-terval I1 of I \x-monotone" if f 0(t) is nowhere 0 on I1, and \y-monotone" if g0(t)is nowhere 0 on I1.43 (These are not mutually ex
lusive: if both f 0(t) and g0(t) arenowhere zero on I1, then I1 is both x-monotone and y-monotone.)Sin
e 
 is a non-stop parametrization, for every t 2 I at least one of the twonumbers f 0(t); g0(t) is nonzero. Hen
e every t 2 I lies in at least one of the setsft 2 I j f 0(t) 6= 0g, ft 2 I j g0(t) 6= 0g. It 
an be shown that ea
h of these sets isa union of subintervals of I. Thus, every t 2 I lies in a subinterval I1 that is eitherx-monotone or y-monotone.Let I1 be an x-monotone interval. Then f 0(t) not zero for any t 2 I1. TheInverse Fun
tion Theorem that you may have learned in Cal
ulus 1 assures us thatthere is an inverse fun
tion f�1, with domain an interval I2 and with range I1, andthat f�1 is 
ontinuously di�erentiable44. Let C1 be the smooth 
urve parametrizedby (f(t); g(t)) using just the x-ni
e open interval I1 rather than the whole originalinterval I. On this domain, \x = f(t)" is equivalent to \t = f�1(x)". So, temporarilywriting tnew = x, for (x; y) = (f(t); g(t)) 2 C1 we havex = tnew;y = g(t) = g(f�1(x)) = g(f�1(tnew))= �(tnew)where tnew 2 I2 and � = g Æ f�1. Sin
e g and f�1 are 
ontinuously di�erentiable, sois h. Furthermore, dx=dtnew � 1 6= 0. Therefore the equations above give us a new
ontinuously di�erentiable, non-stop parametrization 
new of C1:
new(tnew) = (tnew; �(tnew)): (127)The variable in (127) is a \dummy variable"; we 
an give it any name we like. Sin
ethe x-
omponent of 
new(tnew) is simply the parameter tnew itself, we will simply usethe letter x for the parameter; thus
new(x) = (x; �(x)): (128)Thus, this parametrization uses x itself as the parameter, treats x as an independentvariable, and treats y as a dependent variable related to x by y = �(x).43This is very temporary terminology, invented only for this part of these notes.44This important theorem used to be stated, though usually not proved, in Cal
ulus 1. Unfor-tunately, it seems to have disappeared from many Cal
ulus 1 syllabi. The theorem says that if fis a di�erentiable fun
tion on an interval J , and f 0(t) is not 0 for any f 2 J , then (i) the rangeof f is an interval K, (ii) an inverse fun
tion f�1 exists, with domain K and range J , and (iii)f�1 is di�erentiable, with its derivative given by (f�1)0(x) = 1=f 0(f�1(x)). (If we write x = f(t)and t = f�1(x), then the formidable-looking formula for the derivative of f�1 may be written inthe more easily remembered, if somewhat less pre
ise, form dtdx = 1dx=dt .) If the derivative of h is
ontinuous, so is the derivative of h�1. 69



Now suppose that our original 
urve C is a solution 
urve of a given di�erential-form DE M(x; y)dx+N(x; y)dy = 0: (129)Then C1, a subset of C, is also a solution 
urve, so every 
ontinuously di�erentiable,non-stop parametrization (x(t); y(t)) of C1 satis�esM(x(t); y(t))dxdt +N(x(t); y(t))dydt = 0 (130)In parti
ular this is true for the parametrization (128), in whi
h the parameter t is xitself, and in whi
h have y(t) = �(t) = �(x) = y(x). Therefore, for all x 2 I2,0 = M(x; �(x))dxdx +N(x; �(x)) �0(x)= M(x; �(x)) +N(x; �(x)) �0(x): (131)The right-hand side of (131) is exa
tly what we get if we substitute \y = �(x)" intoM(x; y) +N(x; y) dydx . Hen
e � is a solution ofM(x; y) +N(x; y)dydx = 0: (132)Therefore the portion C1 of C is the graph of a solution (namely �) of thederivative-form di�erential equation (132).Similarly, if C2 is a portion of C obtained by restri
ting the original parametriza-tion 
 to a y-monotone interval I2, then C2 is the graph of of a di�erentiable fun
tionx(y)|more pre
isely, the graph of the equation x = �(y) for some di�erentiablefun
tion �|that is a solution of the derivative-form di�erential equationM(x; y)dxdy +N(x; y) = 0: (133)Therefore:Every solution 
urve of the di�erential-form equation (129)is a union of graphs of solutions of the derivative-formequations (132) and (133). 9=; (134)Note that the graphs mentioned in (134) will overlap, in general, sin
e the x-monotoneintervals and y-monotone intervals of a 
ontinuously di�erentiable, non-stop para-metrization 
 will usually overlap. (The only way there will not be an overlap isif f 0(t) � 0 or g0(t) � 0, in whi
h 
ase C is a verti
al or horizontal straight line,respe
tively, and there are, respe
tively, no x-monotone or y-monotone subintervals.)70



We 
all (132) and (133) the derivative-form equations asso
iated with (129). Sim-ilarly, we 
all (129) the di�erential-form equation asso
iated with either of the equa-tions (132), (133).More generally, if a derivative-form equation is algebrai
ally equivalent to (132)or (133) on a region R, we 
all the equation a derivative form of (129) on R. Similarly,if a di�erential-form equation is algebrai
ally equivalent to (129) on a region R, we
all the equation a di�erential form of (132) and (133) on R.45Now 
ompare (132) with the general �rst-order derivative-form DE with inde-pendent variable x and dependent variable y,F(x; y; dydx) = 0: (135)Equation (132) is a spe
ial 
ase of (135), in whi
h the dependen
e of F on its thirdvariable is very simple. If we use a third letter z for the third variable of F, then (132)
orresponds to taking F(x; y; z) =M(x; y) +N(x; y)z, a fun
tion that 
an depend inany 
on
eivable way on x and y, but is linear separately in z. In general, (135) 
ouldbe a mu
h more 
ompli
ated equation, su
h as�dydx�3 + (x + y) sin(dydx) + xey = 0: (136)Solving equations su
h as the one above is mu
h harder than is solving equationsof the simpler form (132). For 
ertain fun
tions F that are more 
ompli
ated than(132), but mu
h less 
ompli
ated than (136), methods of solution are known. Butthere is not a highly-developed general theory for working with equation (135) forgeneral F's.One of the features of (132) that makes it so spe
ial is that on any region onwhi
h N(x; y) 6= 0, (132) is algebrai
ally equivalent todydx = �M(x; y)N(x; y) ; (137)whi
h is of form dydx = f(x; y): (138)Re
all that equation (138) is exa
tly the \standard form" equation that appears inthe fundamental Existen
e and Uniqueness Theorem for initial-value problems. This45This is more restri
tive than the analogous statement in the textbook from whi
h the author is
urrently tea
hing, whi
h omits the requirement of algebrai
 equivalen
e. This textbook, and others,allow multipli
ation/division by fun
tions that 
an be zero. But this 
an lead to the omission of oneor more solutions of the original DE, or the in
lusion of one or more spurious solutions|fun
tions(or 
urves) that are not solutions (or solution 
urves) of the original DE|when trying to write downthe general solution of the original DE. 71



theorem is absolutely 
ru
ial in enabling us to determine whether our te
hniques of�nding solutions a
tually give us all solutions.If you re-read these notes, you will see that all the general fa
ts about DEsin derivative form|su
h as the de�nition of \solution", \impli
it solution", \gen-eral solution", and the fa
t that algebrai
ally equivalent DEs have the same set ofsolutions|were stated for the general �rst-order DE (135). These fa
ts apply just aswell to nasty DEs like (136) as they do to (relatively) ni
e ones like (135). However,in all of our examples, we used equations that were algebrai
ally equivalent to (132)on some region (hen
e also to (138)). The reason is that although the 
on
ept of \theset of all solutions" makes perfe
tly good sense for the general equation (135), theauthor wanted to use examples in whi
h he 
ould show the student easily that theset of all solutions had a
tually been found.Nowadays, students in an introdu
tory DE 
ourse rarely see any �rst-orderderivative-form equations that are not algebrai
ally equivalent, on some region, toa DE in the standard form (138). Be
ause of this, it is easy to overlook a signi�
antfa
t: the only derivative-form DEs that are related to di�erential-form DEs are thosethat are algebrai
ally equivalent to (138) on some region. The two types of equations,in full generality, are not merely two sides of the same 
oin.However, for derivative-form DEs that 
an be \put into standard form"|whi
hare exa
tly those that are algebrai
ally equivalent to a DE of the form (132)|thereis a very 
lose relation between the two types of DEs. We are able to relate many,and sometimes all, solutions of a DE of one type to solutions of the asso
iated DEsof the other type. Statement (134) gives one su
h relation.Let us say that a derivative-form equation, with independent variable x anddependent variable y, is in \almost standard form"46 if it is in the form (132), or 
anbe put in that form just by subtra
ting the right-hand side from the left-hand side. Ifyou re-inspe
t the argument leading to the 
on
lusion below equation (133), you willsee that it also shows that the graph of every solution of (132) or (133) is a solution
urve of (129). Thus:The graph of every solution of a derivative-formequation in almost-standard form is a solution
urve of the asso
iated di�erential-form equation. 9=; (139)Combining (134) and (139), we 
on
lude the following:A smooth 
urve C is a solution 
urve of an equationin di�erential form if and only if C is a union ofgraphs of solutions of the asso
iated derivative-formequations. 9>>=>>; (140)46Another bit of terminology invented only for these notes, just to have a name to distinguish(132) from (137) on regions in whi
h N(x; y) may be zero somewhere.72



We emphasize that in deriving these relations, the transition from the di�erential-form DE (129) to the derivative-form DEs (132) and (133) was NOT obtained by thenonsensi
al pro
ess of \dividing by dx" or \dividing by dy", even though the notationmakes it look that way. The transition was a
hieved by understanding that what weare looking for when we solve (104) is 
urves whose parametrizations satisfy (130),and that for parti
ular 
hoi
es of the parameter (valid on the intervals that we 
alled\x-monotone" or \y-monotone") (130) redu
es to (132) or (133).Similarly, transitions from derivative form to di�erential form are NOT a
hievedby the nonsensi
al pro
ess of \multiplying by dx" or \multiplying by dy". The beautyof the Leibniz notation \ dydx " for derivatives is that it 
an be used to help remembermany true statements by pretending, momentarily, that you 
an multiply or divideby a di�erential just as if it were a real number47. In parti
ular, we 
an use thisprin
iple help us easily remember that the di�erential-form equation (129) is relatedto (but not the same as!) the derivative-form equations (132) and (133). But thisnotational tri
k doesn't tell us everything, su
h as the pre
ise relationship amongthese equations, whi
h is statement (139) (of whi
h statement (134) is the \only if"half).Now let us turn to the way that di�erential-form DEs are used to help us �ndsolutions of almost-standard-form derivative-form DEs. In this setting, we start withan equation of the form (132) (or one that 
an be put in this form by subtra
ting oneside of the equation from the other). We then look at the asso
iated di�erential-formequation M(x; y)dx+N(x; y)dy = 0, whi
h treats x and y symmetri
ally, remember-ing that what we want in the end are solutions that are fun
tions of x. Suppose thatC is a solution 
urve ofM(x; y)dx+N(x; y)dy = 0. Then, from statement (134), everysolution 
urve is a union of (usually overlapping) sub-
urves, ea
h of whi
h is eithera solution y = �(x) of (132), or a solution x = �(y) of (133). But what are lookingfor now is solutions only of the �rst type. C may 
ontain a verti
al line segment, butsu
h a segment is not 
ontained in the graph of any equation of the form y = �(x).However, if we delete from C any points at whi
h the tangent line is verti
al, remainsis a union of graphs of solutions of (132).That des
ribes the geometri
 relation between solutions of Mdx+Ndy = 0 andsolutions of (132), but what 
an we say in terms of formulas? Let us suppose that (forour givenM andN) we have found a solutionG(x; y) = 
0 ofM(x; y)dx+N(x; y)dy =0. Referring ba
k to (2.48), this implies that(a) the graph of G(x; y) = 
0 
ontains a smooth 
urve,and that47Simultaneously, the weakness of the Leibniz notation is that it promotes some in
orre
t or lazythought-patterns. It en
ourages the manipulation of symbols without the understanding of whatthe symbols means. It may lead the student to think something is \obviously true" when it isn'tobvious, and often when it isn't true. 73



(b) any portion of this graph that's a smooth 
urve is a solution 
urve ofMdx +Ndy = 0.We ask the question: is G(x; y) = 
0 an impli
it solution of our original derivative-form equation (132)?To answer this question, we go ba
k to De�nition 2.4. In order for G(x; y) = 
0to be an impli
it solution of (132), its graph must, �rst of all, 
ontain the graphof some solution y = �(x) of (132). Fo
using on the fa
t that su
h a solution is adi�erentiable fun
tion of x, we ask: is it ever possible for a graph of G(x; y) = 
0 notto 
ontain the graph of a di�erentiable fun
tion of x, on any interval, no matter howtiny?The graph of G(x; y) = 
0 
ontains points of (potentially) two types: thosethat lie in a smooth 
urve 
ontained in the graph, and those that do not. Let'ssuppose that C is a smooth 
urve lying in the graph of G(x; y) = 
0, but assumethat this graph does not 
ontain the graph of a di�erentiable fun
tion of x. Let
(t) = (f(t); g(t)) be a 
ontinuously di�erentiable, non-stop parametrization of C,with parameter-interval I. In the language we used in the argument leading to (134),if I 
ontains an x-monotone interval, then that argument shows that C 
ontainsthe graph of a di�erentiable fun
tion of x, whi
h would 
ontradi
t our assumption.Therefore I 
ontains no x-monotone intervals, so f 0(t) � 0 on I. Therefore f is
onstant; we have f(t) � x0 for some x0. Hen
e C is 
ontained in the verti
al linefx = x0g.This shows that if the graph of G(x; y) = 
0 does not 
ontain the graph of adi�erentiable fun
tion of x, then the graph 
onsists entirely of segments of verti
allines, plus any points of the graph not 
ontained in a smooth 
urve.It 
an be shown that if the fun
tion G is di�erentiable|whi
h will usually be the
ase if the equation G(x; y) = 
0 is found by the te
hniques used in an introdu
toryDE 
ourse|and the graph of G(x; y) = 
0 satis�es all the 
onditions above, thenthere are no points on this graph that do not lie on a smooth 
urve in the graph,and the graph 
onsists entirely of verti
al lines. From this, it 
an further be shownthat G(x; y) is a fun
tion of x alone. (For example, the equation G(x; y) = 
0 
ouldbe x = 3, whose graph in the xy plane is a single verti
al line, or x2 � 1 = 0, whosegraph is two verti
al lines; or sin x = 0, whose graph is an in�nite 
olle
tion of verti
allines.) In this 
ase, the solution \G(x0; y0) = 
0" of M(x; y)dx+N(x; y)dy = 0 is notan impli
it solution of M(x; y) +N(x; y) dydx = 0.So if G(x; y) is di�erentiable and is not a fun
tion of x alone, then the graphof G(x; y) = 
0 does 
ontain the graph of some di�erentiable fun
tion � of x. Thegraph of y = �(x) is a smooth 
urve lying in the graph of G(x; y) = 
0. Referring to(b) above, we see that this implies that the graph of y = �(x) is a solution 
urve ofMdx+Ndy = 0. The argument leading from the senten
e that in
ludes (129) to thesenten
e that in
ludes (132) then shows that � is a solution of (132).To re
ap: we have shown that if the equation G(x; y) = 
0 is a solution ofM(x; y)dx+N(x; y)dy = 0, and G is di�erentiable, then:74



either G(x; y) is a fun
tion of x alone, in whi
h 
asethe equation G(x; y) = 
0 is not an impli
it solution ofM(x; y) +N(x; y) dydx = 0, orG(x; y) is not a fun
tion of x alone, in whi
h 
ase theequation G(x; y) = 
0 is an impli
it solution ofM(x; y) +N(x; y) dydx = 0.
9>>>>>>>>=>>>>>>>>; (141)

Sin
e the graph of every solution ofM+N dydx is a solution 
urve ofMdx+Ndy =0, (141) implies the following:Suppose that we have a general solution, in impli
it form, of adi�erential-form equation Mdx +Ndy = 0. Further suppose thatea
h equation in the 
olle
tion 
omprising the general solution isof the form G(x; y) = 
onstant (not ne
essarily the same G forall equations in the general impli
it-form solution), where Gis di�erentiable. Then the 
olle
tion of equations obtained bydeleting those equations for whi
h G(x; y) depends only on y, isthe general solution, in impli
it form, of the asso
iated derivative-form equation M +N dydx = 0.
9>>>>>>>>>>>>=>>>>>>>>>>>>; (142)

Example 2.60 (Exa
t equations, part 4) Suppose that we wish to solve a DE ofthe form M(x; y) +N(x; y)dydx = 0 (143)on a region R on whi
h N(x; y) is not identi
ally zero (if N(x; y) were identi
ally zero,then (143) would redu
e to the algebrai
 equation M(x; y) = 0, not a true di�erentialequation). If the asso
iated di�erential-form equation is exa
t on R, and we havefound a fun
tion F su
h that Mdx + Ndy = dF on R, then Example 2.53 tells usthat the general solution of Mdx +Ndy = 0 on R, in impli
it form, is the family ofequations F (x; y) = C (144)where C is a \semi-arbitrary" 
onstant. The fun
tion F is automati
ally di�eren-tiable, so (142) applies: unless F is a fun
tion of x alone, ea
h of the equations(144) is an impli
it solution of (143). But if F is a fun
tion of x alone, thenN(x; y) = �F�y (x; y) � 0. Therefore if Mdx + Ndy = dF on R, then (144) is thegeneral solution of (143) in impli
it form (i.e. it is not just the general solution, inimpli
it form, of the asso
iated di�erential-form equation).75


