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Algebra in Lagrange Multiplier Problems

When faced with solving several simultaneous equations in several unknowns, one
way to proceed is successively to eliminate variables. For example, if you are trying to
extremize a function f of two variables x, y, z subject to a constraint g(x, y) = c, you wind
up having to solve three equations in the three unknowns x, y, λ. Two of these equations
come from ∇f = λ∇g; the third is the constraint g(x, y) = c. Generally it makes sense to
eliminate λ first, if possible, and then successively to eliminate the other variables until
all solutions are found. The examples below illustrate this method. In the first example,
there is only one case to consider.

With practice and experience you will have to write out only a small fraction of the
steps I’ve written below, and will find other ways to short-cut some of the work. To
demonstrate, I’ll do the first example below methodically (taking almost a page), then
efficiently (taking three lines).

Example 1. Minimize f(x, y) = x+y for positive x, y subject to the constraint 1
x

+ 1
y

= 10.
Assume the minimum exists.

Here g(x, y) = 1
x

+ 1
y
, so the i and j components of the vector equation ∇f = λ∇g,

together with the constraint equation, give us

1 = λ
−1

x2
,

1 = λ
−1

y2
,

1

x
+

1

y
= 10.

Step 1a. Solve for λ in the first equation: λ = −x2.
Step 1b. In the remaining two equations, everywhere you see a λ, replace it by −x2:

1 = (−x2)
−1

y2
=
x2

y2
,

1

x
+

1

y
= 10.

Step 1c. Simplify the above equations if possible

x2 = y2,
1

x
+

1

y
= 10.

Step 2a. Repeat the idea of Step 1: Choose a variable (let’s say y) in the first of our
new equations, and solve for it in terms of the other variable(s) (in this case x). Since we
are given that x, y are positive, the only solution of y2 = x2 is y = x.
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Step 2b. Substitute y = x into the remaining equation we found in Step 1c.

1

x
+

1

x
= 10.

Step 2c. Solve this equation for x: 2/x = 10, so x = 2
10

= 1
5
.

Step 3. Now use the result of Step 2a to get y: y = x = 1
5
.

Step 4. Write all the solution pairs (x, y) we’ve found (in this case there’s just one),
and compute f of them.

f(
1

5
,
1

5
) =

2

5

Since we are assuming the minimum value exists, this must be it (2/5).

Comment. We did not bother to figure out the value of λ, since that’s not needed
for our final answer. That’s a reason for eliminating λ first.

Example 1, redone less methodically but more efficiently. If you have trouble following
what I’m about to do, or repeating it without looking at these notes, or doing harder
problems, then you need more practice with the methodical approach.

Write down the original three equations in three unknowns. The first two equations
imply x2 = y2, hence x = y. The third equation then gives 2/x = 10, so x = 1/5 = y.
Thus the minimum value of f is 1/5 + 1/5 = 2/5.

Example 2. Minimize f(x, y, z) = x4 + 8y4 + 27z4 for x, y, z subject to the constraint
x+ y + z = 11/12. Assume the minimum exists.

Step 0a. Write the relevant four equations in four unknowns (three from ∇f = λ∇g,
the other from the constraint).

4x3 = λ,

4 · 8y3 = λ,

4 · 27z3 = λ,

x+ y + z =
11

12
.

Step 0b (helpful but not necessary). Redefine λ, if possible, to simplify the algebra
coming up. Specifically, it doesn’t matter if you originally started with ∇f = λ∇g or
with ∇f = cλ∇g where c is any constant; both equally well express the relation “∇f is
an unknown multiple of ∇g. If we choose c = 4 (i.e. replace λ by 4λ in the equations
above), we can divide through by the 4 and get the simpler equations
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x3 = λ,

8y3 = λ,

27z3 = λ,

x+ y + z =
11

12
.

Step 1. Solve the first equation for λ (getting λ = x3), then substitute this into the
remaining equations:

8y3 = x3,

27z3 = x3,

x+ y + z =
11

12
.

Step 2a. Solve the (new) first equation for y in terms of x (in this case by taking the
cube root of both sides): 2y = x, hence y = x

2
.

Step 2b. Substitute this expression for y wherever y occurs in the remaining two
equations.

27z3 = x3,

x+
x

2
+ z =

11

12
.

Step 3a. Solve the (new) first equation for z in terms of x (in this case by taking the
cube root of both sides): 3z = x, hence z = x

3
.

Step 3b. Substitute this expression for z wherever z occurs in the remaining two
equations.

x+
x

2
+
x

3
=

11

12
.

Step 4. Solve this equation for x:

x(1 +
1

2
+

1

3
) =

11

6
x =

11

12
⇒ x =

1

2
.

Step 5. Use the results of Steps 3a and 2a to get z and y from the x you just found:

z = x/3 =
1

6
, y = x/2 =

1

4
.
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Step 6. Plug all the solution triples (x, y, z) you just found (in this case there’s just
one) into f :

f(
1

2
,
1

4
,
1

6
) = (

1

2
)4 + 8(

1

4
)4 + 27(

1

6
)4 =

11

96
.

Example 2, redone less methodically but more efficiently. Start with the four original equa-
tions. The first three give x3 = 8y3 = 27z3, hence x = 2y = 3z, hence y = x/2, z = x/3.
The fourth equation then gives (11/6)x = 11/12, hence x = 1/2, y = 1/2, z = 1/6. Hence
the minimum value of f is f(1/2, 1/4, 1/6) = 11/96.

Example 3. Minimize f(x, y, z) = x2+2y2+3z2 subject to the constraint x2+y2+z2 =
1. Here I won’t keep writing “Step 1, Step 2, . . . ”; you’ll have to fill in the missing work
on your own. The strategy is the same, but there is an additional complication: you can’t
immediately solve for λ; there are some special cases. After dividing the “∇f = λ∇g”
equations by 2, we have

x = λx,

2y = λy,

3z = λz,

x2 + y2 + z2 = 1.

We can’t immediately get λ from the first equation, because x might be zero. So there
are two cases.

Case I. x = 0, or
Case II. λ = 1 (since if x 6= 0, we can divide through by x in the first equation.).

Analysis of Case I.
Substituting x = 0 into the lower three equations, we get

2y = λy,

3z = λz,

y2 + z2 = 1.

The first new equation now gives us two sub-cases:
Case IA. y = 0, or
Case IB. λ = 2.

Analysis of Case IA.
Subsituting y = 0, we obtain

3z = λz,

z2 = 1.

The first of these is now irrelevant to the question we’re trying to answer, since the second
equation immediately gives us z = ±1. So from Case IA we get the points (0, 0,±1) to
plug into f (eventually).
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Analysis of Case IB.
Plugging λ = 2 into the last two Case I equations, we have

3z = 2z,

y2 + z2 = 1.

The first equation gives z = 0, and plugging into the second we get y = ±1. So from Case
IB we get the points (0,±1, 0) to plug into f (eventually). We’ve now exhausted Case I.

Analysis of Case II.
Substituting λ = 1 into the latter three of the original four equations, we obtain

2y = y,

3z = z,

x2 + y2 + z2 = 1.

The first two of the new equations give y = 0 and z = 0. Plugging into the third
equation we get x2 = 1, so x = ±1. This gives us the points (±1, 0, 0) to plug into f .

Our case-by-case analysis is now complete, so we compute f of all the points we’ve
found:

f(1, 0, 0) = 1.

f(−1, 0, 0) = 1.

f(0, 1, 0) = 2.

f(0,−1, 0) = 2.

f(0, 0, 1) = 3.

f(0, 0,−1) = 3.

Hence the minimum value of f is 1 and the maxiumum value is 3.

Example 3, redone less methodically but more efficiently. Starting with the original four
equations in four unknowns, rewrite the first three as

x(λ− 1) = 0,

y(λ− 2) = 0,

z(λ− 3) = 0.

At a solution point (x, y, z) at most one of x, y, z can be nonzero, since if x 6= 0 then
λ = 1; if y 6= 0 then λ = 2; and if z 6= 0 then λ = 3 (and λ cannot simultaneously equal
two different numbers!). Therefore the solution points must have x = y = 0, or x = z = 0,
or y = z = 0. From the constraint equation we get the value of the missing variable (±1),
so the set of solution points is (0, 0,±1), (0,±1, 0), and (0, 0,±1). Plugging into f , the
minimum value is 1 and the maximum value is 3.
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