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Exponentials of Matrices.

Suppose p is a polynomial of degree m: p(x) = b0 + b1x+ . . .+ bmx
m for some (real

or complex) numbers b0, b1, . . . , bm. For any n× n square matrix A, we define the n× n
matrix p(A) by “plugging in A for x”:

p(A) = b0I + b1A+ . . .+ bmA
m

where I is the n×n identity matrix. To shorten the notation we define A0 = I and write
p(A) =

∑m
k=0 bkA

k.

Example If p(x) = 1 + x2, and J =

(
0 −1
1 0

)
. then J2 = −I, so p(J) =

(
0 0
0 0

)
.

A Taylor series can be thought of as an “infinite polynomial” f(x) =
∑∞
k=0 bkx

k. For
any such series, and any n× n matrix A, we can define

f(A) =
∞∑
k=0

bkA
k

provided the series converges (i.e. if for each i and j, the series for the (ij)th entry of the
series for f(A) converges). Note that in general f(A) is not the matrix whose (ij)th entry
is f(Aij), so you must be careful with notation: (f(A))ij 6= f(Aij).

Recall the following very important Taylor series, all of which converge for all real x:

ex = 1 + x+
x2

2!
+
x3

3!
+ . . .

cosx = 1− x2

2!
+
x4

4!
− x6

6!
+ . . .

sinx = x− x3

3!
+
x5

5!
− x7

7!
+ . . .

It can be shown that the corresponding series for eA, cosA, sinA converge for all square
matrices A.

Matrix exponentials are particularly important in the study of systems of linear
differential equations. (See your textbook, pp. 262-264, for examples and for a slightly
different approach to this subject.) It can be shown that for any square matrix A, etA is a
differentiable matrix-valued function of t, with d

dt
etA = AetA = etAA. Using this, it is not

hard to show that for a system dy
dt

= Ay, where A is an n×n matrix and y is an Rn-valued
function of t with initial value y(0) = y0 ∈ Rn, the solution of the corresponding initial-
value problem is y(t) = etAy(0). This generalizes the result for n = 1 that you learned in
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your differential equation class (or in the context of “exponential growth/decay” problems
in Calculus 2).

Exercise 1. Let J =

(
0 −1
1 0

)
. (a) Compute J2, J3, J4, J5. From the pattern you

see, deduce what Jk is for all k ≥ 0. (b) Compute the matrix etJ , where t is a general
real number (do not choose a value for t; leave it as “t”).

Exercise 2. Show that if B = C−1AC, then Bk = C−1AkC for all k ≥ 0. Deduce
from this that for any polynomial p, p(B) = C−1p(A)C. This result remains valid for any
function defined by a convergent Taylor series: if B = C−1AC, and if the series for f(A)
converges, then so does the series for f(B), and f(B) = C−1f(A)C.

Exercise 3. Suppose f is a function whose Taylor series
∑∞
k=0 bkx

k converges for all x.
Show that if B is a diagonal matrix with diagonal entries λ1, . . . , λn, then for each k, Bk

is a diagonal matrix with entries λk1, . . . , λ
k
n, and deduce from this that f(B) is a diagonal

matrix with diagonal entries f(λ1), . . . , f(λk). (Thus f of a diagonal matrix is very easy
to compute.)

In view of Exercises 2 and 3, f(A) can be computed easily for any diagonalizable
matrix A as follows. (1) Find an eigenbasis for A, and let C be the matrix whose columns
are the eigenvectors. Then B = C−1AC is a diagonal matrix whose diagonal entries
are the eigenvalues of A. Compute C−1 for later use. (2) Since B = C−1AC, we have
A = CBC−1, and hence f(A) = Cf(B)C−1 by Exercise 1 (extended to Taylor series).
Compute f(B) using the result of Exercise 2, then obtain f(A) by multiplying by C and
C−1.

Exercise 4. Compute eA for each of the following matrices. (a) A =

(
3 2
2 0

)
. (b)

A =

 2 1 0
0 1 0
0 0 1

.
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